Mississippi State University Scholars Junction

Theses and Dissertations

Theses and Dissertations

8-1-2010

Earthquake risk assessment of Mississippi State University

Inoka Peiris

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Peiris, Inoka, "Earthquake risk assessment of Mississippi State University" (2010). *Theses and Dissertations*. 1606. https://scholarsjunction.msstate.edu/td/1606

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

EARTHQUAKE RISK ASSESSMENT OF MISSISSIPPI STATE UNIVERSITY

By

Inoka Peiris

A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geosciences in the Department of Geosciences

Mississippi State, Mississippi

August 2010

Copyright 2010

By

Inoka Peiris

EARTHQUAKE RISK ASSESSMENT OF MISSISSIPPI STATE UNIVERSITY

By

Inoka Peiris

Approved:

Darrel Schmitz Professor of Geology Head of Department of Geosciences Committee Chair James May Adjunct Professor of Geology Department of Geosciences Committee Member

Charles Wax Professor of Geography Department of Geosciences Committee Member Christopher Dewey Associate Professor of Geology Department of Geosciences Graduate Coordinator

Gary Myers Dean of Arts and Sciences

Name: Inoka Peiris

Date of Degree: August 7, 2010

Institution: Mississippi State University

Major Field: Geosciences

Major Professor: Dr. Darrel Schmitz

Title of Study: EARTHQUAKE RISK ASSESSMENT OF MISSISSIPPI STATE UNIVERSITY

Pages in Study: 99

Candidate for Degree of Master of Science

Mississippi State University is one of the many public institutions in Mississippi located near a seismic hazard zone known as the New Madrid Seismic Zone (NMSZ). Previous studies reveal the possibility of damage to the campus during an earthquake is in the order of ten percent. Risk assessment for building structures on campus was carried out using HAZUS-MH MR3 software package, for several earthquake scenarios defined to replicate historic and hypothetical earthquake events.

The study predicts peak ground accelerations of 0.09g to 0.2g relating to 0.67% to 4.28% building loss ratios respectively, which amounts to a loss of \$8.2 million to \$53 million. Wood and reinforced masonry buildings show significant resistance to earthquakes compared to concrete and unreinforced masonry buildings. The results of this study suggest that there is a considerable seismic risk to Mississippi State University buildings from a seismic event originating in NMSZ.

DEDICATION

To my loving husband, family, friends.

ACKNOWLEDGEMENTS

I would like to expresses my sincere gratitude to all who helped me in the completion of this research. Especially to Dr. Darrel Schmitz, my supervisor, for his continuous support and guidance. I also would like to thank Dr. May, Dr. Wax, Dr. Dewey and all other faculty members of Department of Geosciences.

My sincere gratitude goes to Department of Facilities Management and FEMA South Carolina Division for their assistance.

Finally I would like to thank my husband for his constant encouragement regarding my higher studies.

TABLE OF CONTENTS

DEDICA	ΓΙΟΝii
ACKNOW	VLEDGEMENTS iii
LIST OF	TABLES vi
LIST OF	FIGURES viii
I.	INTRODUCTION1
	Geology at Mississippi State University6
II.	LITERATURE REVIEW10
	Earthquakes
	Seismic Hazard and Seismic Risk
	Effects of Earthquakes on Buildings
	1 0
	Different types of buildings
	Buildings constructed using wood
	Buildings constructed using masonry
	Buildings constructed using steel
	Terminology
	Peak ground acceleration (PGA)
	Spectral acceleration
	Damage state probabilities
	Capacity curve
	Fragility curve
	Seismic Standards for Buildings
	New Madrid Seismic Zone
	Earthquake History of Mississippi
	Prior Research
	Hypothesis
	Objective
III.	METHODS

	HAZUS (HAZards United States)	36
	Scenario basis	38
	Attenuation relationship	
	Soil map	39
	Selection of representative design level	
	Selection of building type	41
IV.	RESULTS AND DISCUSSION	43
	Earthquake Risk Assessment with Default Data	43
	Earthquake scenario at 35.53N, 90.42W; Marked Tree, Arkansas	43
	Earthquake scenario at 36.00N and 90.00W; Missouri	45
	Earthquake scenario at 34.6N, 89.2W; Benton County, Mississippi	45
	Earthquake Risk Assessment with User Defined Data	55
	Earthquake scenario at 34.6N, 89.2W	56
	Earthquake scenario at 34.0N, 88.76W; Hypothetical epicenter to	
	produce ~0.2g peak ground acceleration at MSU	64
	Applications of Risk Assessment	65
	Uncertainties of Risk Assessments	
V.	CONCLUSION	66
REFEREN	NCES	68

APPENDIX

А.	MISSISSIPPI STATE UNIVERSITY BUILDING DATA USED FOR USER SUPPLED DATA ANALYSIS	73
В.	DAMAGE PROBABILITIES FOR THE LIST OF BUILDINGS STUDIED AT THE MISSISSIPPI STATE UNIVERSITY	88
C.	DAMAGE PROBABILITIES FOR THE LIST OF BUILDINGS STUDIED AT THE MISSISSIPPI STATE UNIVERSITY FOR AN EARTHQUAKE RESULTING IN APPROXIMATELY 0.2g PEAK GROUND ACCELERATION IN THE STUDY AREA	04
	ACCELERATION IN THE STUDY AREA	94

LIST OF TABLES

TABLE	Pa	ige
1	Probabilities for earthquake activity recurrence of New Madrid Seismic Zone (After Hopper, 1985)	5
2	The relationship between earthquake magnitude and MMI (Source: Missouri department of natural resources)	.12
3	Approximate relationship between MMI and PGA	17
4	Earthquakes in Mississippi (After Bograd, 2008)	27
5	Accounts of 17 December 1811 aftershock (After Hough and Martin (2002))	.31
6	Soil Classes (HAZUS- MH MR3 Technical Manual)	40
7	HAZUS MH Guidelines for selection of damage functions for buildings based on seismic zone and building age (HAZUS MH-MR3 Technical Manual)	41
8	Building structure (Model Building Types) listed in the HAZUS MH- MR3 (From HAZUS User Manual)	42
9	Ground motion parameters for magnitude 7.00 earthquake scenario at 34.6n,89.2w for Oktibbeha county census tracts (Attenuation function CEUS, soil type D)	.49
10	Ground motion parameters for the magnitude 7.00 earthquake scenario at 34.6N,89.2W for Oktibbeha county census tracts (Attenuation function Toro et al., (1997), soil type D)	.50
11	Ground motion parameters for the magnitude 7.00 earthquake scenario at 34.6N,89.2W for Oktibbeha county census tracts (attenuation function CEUS, soil type C)	.52
12	Mississippi State University building data used for the study (Source: 2009 Annual Capital facility study)	.74

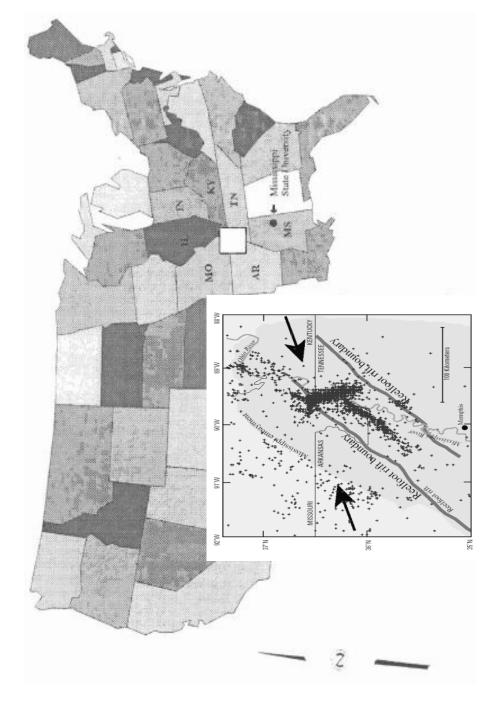
13	Damage state probabilities for the list of buildings studied (These tables
	are presented in the output format of HAZUS-MH MR3)
14	Damage state probabilities of buildings for an earthquake producing
	0.2g peak ground acceleration in the study area. (These tables
	are presented in the output format of HAZUS-MH MR3)

LIST OF FIGURES

FIGURE	Page
1	Location of the New Madrid fault zone and the Mississippi State University (After Snodgrass, 1998)
2	Isoseismal map for the Arkansas earthquake of December 16, 1811 (After Stover and Coffman, 1992)4
3	Mesozoic stratigraphic section of Mississippi (After Dockery, 2008)7
4	Geologic map of Mississippi and the location of Mississippi State University in the Oktibbeha County (Digital data for the image is from Mississippi Automated Resource Information System (MARIS))
5	Geologic column in parking lot behind Mckee dormitory on the east side of Mississippi State University (After Russell et al., 1983)9
6	Example for a building constructed using wood - Computer Based Testing Center at MSU14
7	Example for a building constructed using masonry - The Lee Hall at MSU
8	Example for a building constructed using concrete - Allen Hall at MSU16
9	Example for a building constructed using steel – New Construction near Coliseum at MSU16
10	Example for a building capacity curve where Sd represents the spectral displacement and Sa represents the spectral acceleration (From HAZUS Technical Manual)
11	Example for a building fragility curve (From HAZUS Technical Manual)
12	Location of NMSZ within Mississippi embayment (After Cox and Arsdale, 1997)

13	Fault segmentation of the NMSZ (After Johnston and Schweig (1996))22	2
14	Approximate Locations of NMSZ Earthquakes with M≥6.0 since 1700 (After Kochkin and Crandell, 2003)23	3
15	Earthquake epicenters in Mississippi (From Bograd, 2008)26	5
16	Location and estimated Modified Mercalli Intensity values for 17th December 1811 aftershock (Hough and Martin, 2002)29)
17	Historical setting in 1811-1812 (After Johnston and Schweig (1996)))
18	Seismicity of Oktibbeha County according to FEMA studies)
19	Relationship between Attenuation functions, Moment of magnitude of an earthquake, Distance and Peak Ground Acceleration (HAZUS Technical Manual))
20	Map showing UBC seismic zones of United States41	L
21	Peak ground acceleration for magnitude 8.0 Earthquake at 35.53N, 90.42W; at Marked Tree, Arkansas (Attenuation function - CEUS, Soil Type- D)	ł
22	Spectral acceleration at 0.3 sec (g) for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation function-CEUS, soil type D)46	5
23	Peak ground acceleration for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation Function-CEUS, Soil Type D)47	7
24	Peak ground acceleration for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation Function-Toro et al. (1997), Soil Type D)48	3
25	Summary report from HAZUS for building damage by building count for Oktibbeha County	ł
26	Summary report from HAZUS for building damage by building type for Oktibbeha County	ł
27	Summary report from HAZUS for direct economic losses for buildings at Oktibbeha County	ł
28	Mississippi State University buildings in different census tracts within Oktibbeha County	5
29	Peak ground acceleration for census tracts at Oktibbeha county and MSU buildings	5

30	Summary report from HAZUS; building damage count at MSU for different building types in different damage states	7
31	Summary report from HAZUS; building damage % distribution by building type at MSU	7
32	"None" damage probability for selected buildings at MSU5	9
33	"Slight" damage state probability for selected buildings at MSU6	0
34	"Moderate" damage state probability for selected buildings at MSU6	1
35	"Extensive" damage state probability for selected buildings at MSU6	2
36	"Complete" damage state probability for selected buildings at MSU6	3
37	Summary report for the direct economic losses – User supplied data	3
38	Peak ground acceleration values and complete damage probabilities for buildings at 0.2g	4


CHAPTER I

INTRODUCTION

Catastrophic natural disasters that could impact the United States include a significant earthquake in Los Angeles, California, a category V hurricane in Miami, Florida, and a magnitude 7.7 earthquake in the New Madrid Seismic Zone (Elnashai et. al., 2008). The state of Mississippi is considered as a one of the states that has the potential to experience the impact due to earthquake activity in the New Madrid Seismic Zone (NMSZ). States Alabama, Arkansas, Illinois, Indiana, Kentucky, Missouri and Tennessee will also experience damage from an earthquake in NMSZ.

An earthquake is a sudden release of energy or strain that has accumulated over a long time period. Earthquake activity may cause noticeable surface motion or very small subsurface movement. The State of Mississippi has experienced earthquake activities in the past (United States Geological Survey). Observable surface motion in Mississippi is mostly attributed to activity generated from the New Madrid fault zone (Figure1), which lies within the central Mississippi valley; extending from northeast Arkansas through southeast Missouri, western Tennessee, western Kentucky to southern Illinois. Historically, this area has been the site for some of the largest earthquakes in North America. Between 1811 and 1812, four catastrophic earthquakes with magnitude estimates greater than 7.0 occurred during a three month period. The earthquake which occurred on December 16, 1811 at Marked Tree, Arkansas, had an intensity of about VII

Location of the New Madrid fault zone and the Mississippi State University (After Snodgrass, 1998). Figure 1

which is equivalent to a magnitude 6.0 impact on Mississippi State University, as indicated by the modified Mercalli scale intensity map (Figure 2). Instruments were installed in 1974 to monitor seismic activities of the NMSZ. Since then more than 4000 earthquakes, most of which are too small to be felt have been recorded.

Analysis of seismological and geophysical data around NMSZ, gathered after 1974 show that there is a relationship between earthquake locations and distinct geophysical anomalies (Braile et al., 1997). Through the analysis of data, scientists suggest that the seismicity of the NMSZ is associated with a reactivated ancient, buried rift. Reactivation of the buried rift occurred due to nearly east-west compressional platetectonic-generated stresses (Zoback et al., 1980, Braile et al., 1997).

The probability for an earthquake of magnitude 6.0 or greater to occur in the NMSZ is significant in the near future. Prior research assumes that strong earthquakes will occur along the New Madrid seismic zone within this generation as well as within the lifetimes of presently existing structures (Olshansky, 1994). Although calculations of probabilities of earthquake recurrence of NMSZ (Table1) suggest that a major seismic event will occur in near future in New Madrid seismic zone, it has been recently estimated that the odds of another earthquake of magnitude 8.0 or greater taking place in the next fifty years is between 7-10 percent (Smalley Jr. et al., 2005). An earthquake with a magnitude equal to that of those which occurred in the 1811 – 1812 events could result in much great economic loss than was previously incurred at the beginning of the nineteenth century.

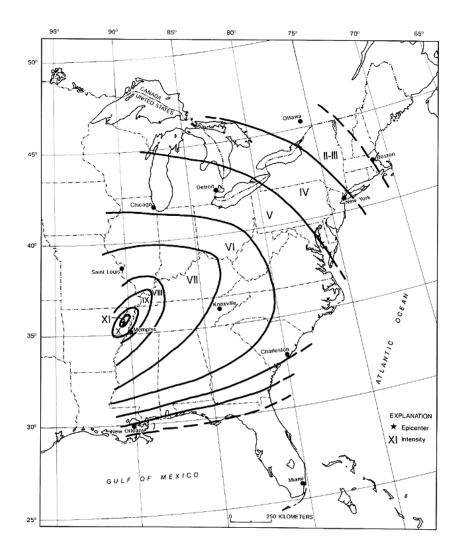


Figure 2 Isoseismal map for the Arkansas earthquake of December 16, 1811 (After Stover and Coffman, 1992).

Magnitude	Modified Mercalli	Approximate	Approximate
	Intensities at Mississippi	Probability in 15	Probability in 50
	State University	years (%)	years (%)
6.7 Vi – V		40 -60	86 -97
7.6	Vii - Vi	5.4 - 8.7	19 – 29
8.6 Viii - Vii		0.3 – 1.0	2.7 - 4.0

Table 1Probabilities for earthquake activity recurrence of New Madrid SeismicZone (After Hopper, 1985).

Mississippi State University is located approximately 250 kilometers (400 miles) southeast of the New Madrid fault zone. Although previous studies indicate possible damage in the order of 10 percent to Mississippi State University, the effects of an earthquake upon its structures have not yet been fully investigated.

The study area, is located southeast of the city of Starkville in Oktibbeha County, latitudes $33^0 27^0 30^0$ N and longitudes $88^0 47^0 30^0$ W. As of fall 2008, MSU is the largest university in the state of Mississippi. It is also the largest employer in Starkville and dominates the city economy.

Considering the location of Mississippi State University (relative to the New Madrid seismic Zone) and the probability of earthquakes in the area, it is clear that there could be a possibility of the University being damaged by an earthquake within the near future. The earthquake risk assessment process will help to understand the risk and the possible effect on building structures from an earthquake. HAZUS- MH MR3 (HAZUS) is a Geographical Information System (GIS) based loss estimation software that estimates damage from earthquakes, hurricanes, and floods. HAZUS can be used to simulate user

defined, historic, or probabilistic earthquake events to calculate ground motion parameters such as spectral acceleration, spectral displacement, peak ground acceleration, peak ground velocity. It can then estimate physical damages, economic losses and social impact from the specified earthquake event.

Geology at Mississippi State University

Mississippi State University is located within the Mississippi Embayment, which is a northward extension of the Gulf of Mexico coastal plain. The Mississippi Embayment is a southwestward-plunging geosyncline that contains late Cretaceous and Cenozoic sediments (Figure 3). Mississippi State University is on the Upper Cretaceous age Prairie Bluff Chalk formation (Figure 4). The Prairie Bluff Formation is a transgressive blanket that consists of two types of chalk. The top nine meters (29 ft) of the formation consists of dense, deeply weathered, fossiliferous, gluconitic clay, and the lower part consists of highly fossiliferous, gluconitic, sandy chalk (Figure 5). The Prairie Bluff Formation rests on top of the Ripley Formation. Excavations at Mississippi State University expose marls and chalk from the Ripley and the Prairie Bluff formations respectively (Russell et al., 1983).

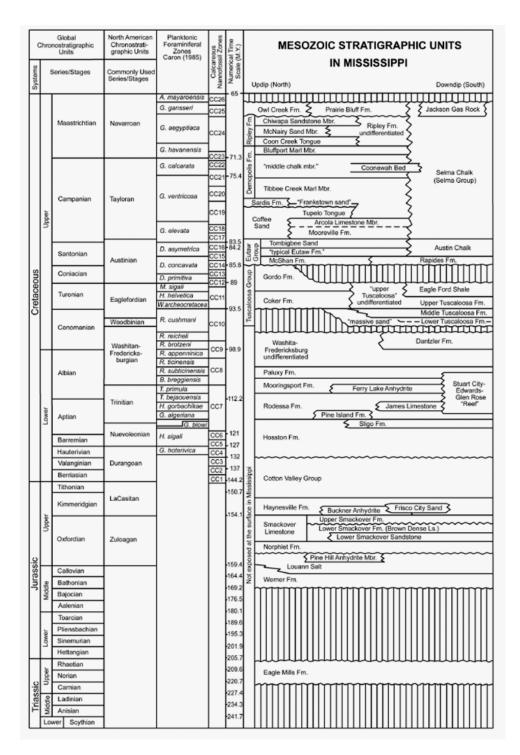


Figure 3 Mesozoic stratigraphic section of Mississippi (After Dockery, 2008).

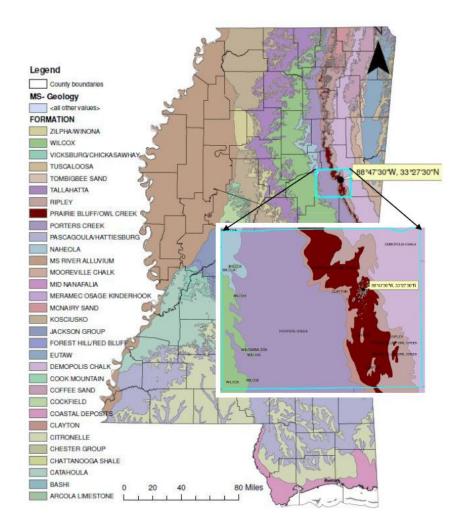


Figure 4 Geologic map of Mississippi and the location of Mississippi State University in the Oktibbeha County (Digital data for the image is from Mississippi Automated Resource Information System (MARIS)).

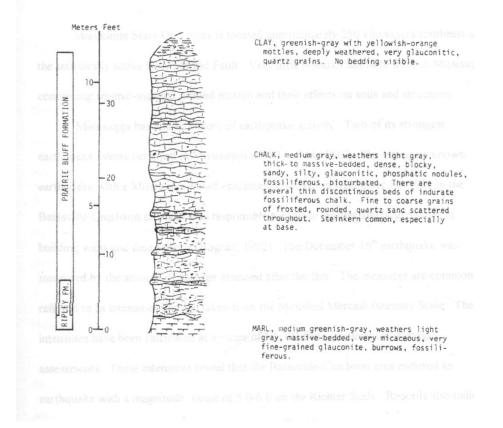


Figure 5 Geologic column in parking lot behind Mckee dormitory on the east side of Mississippi State University (After Russell et al., 1983).

Earthquake site analysis of Mississippi State University (Snodgrass, 1998) confirms the bedrock of the MSU area is Cretaceous chalk of the Prairie Bluff Formation with an average shear wave velocity of 785 meters/sec (2575ft/sec). The research also suggests a spectral peak ground acceleration range of 0.57g to a 0.65g generated from 6.2 and a 8.25 magnitude earthquake events at an epicentral distance of approximately 250 kilometers (400 miles).

CHAPTER II

LITERATURE REVIEW

Earthquakes

An earthquake is a sudden shaking of the earth. Earthquakes occur due to release of elastic strain energy that is accumulated beneath the surface of the earth due to plate movement (Murty, 2005). Energy released in an earthquake spreads out as seismic waves that travel through and along the surface of the earth causing damage to structures built on it.

Depending on the location of the earthquake on the tectonic plates, earthquakes can be broadly divided into two categories. Namely inter-plate earthquakes and intraplate earthquakes. The inter-plate earthquakes occur along the boundaries of the tectonic plates whereas intra-plate earthquakes occur within the plate and/or away from the plate boundaries.

Measurement of earthquake magnitude and intensity

Quantitative measure of the amount of energy released during an earthquake at the source is known as the magnitude of an earthquake. Magnitudes of earthquakes are estimated based on instrumental observations and are not based on the effects of earthquake to structures. Richter scale is a commonly used magnitude scale in earthquake studies.

Qualitative measure of actual ground shaking at a location during an earthquake is known as the intensity of the earthquake. Modified Mercalli Intensity (MMI) is a

commonly used intensity scale in earthquake studies. Intensity, records only observations of effects due to an earthquake and help to understand the extent of the affected area.

An earthquake with a specific magnitude will produce different intensities at different places depending on many factors like geology and distance from the epicenter. The relationship between earthquake magnitude, MMI and effects produced by different values is shown in Table 2.

Table 2The relationship between earthquake magnitude and MMI
(Source: Missouri department of natural resources)

EQ Magnitude	MMI Value	Summary Damage Description Used on Maps	Full Description	
1.0-3.0	I	maps	Not felt. Marginal and long period effects of large earthquakes.	
			Felt by persons at rest, on upper floors, or favorably placed.	
3.0-3.9			Felt indoors. Hanging objects swing. Mbration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.	
4.0-4.9	IV		Hanging objects swing. Mbration like passing of heavy trucks;	
	~	Pictures Move	Hanging objects swing. Mbration like passing of heavy trucks; or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of IV, wooden walls and frame creak.	
5.0-5.9	м	Objects Fall	Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.	
	MI	Non-Structural Damage	Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Knickknacks, books, etc., off shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church, school). Trees, bushes shaken (visibly, or heard to rustle).	
6.0-6.9	6.0-6.9 barnage partial collapse. Some damage to masonry B; normasonry A; Fall of stucco and some masonry w fall of chimneys, factory stacks, monuments, to elevated tanks. Frame houses moved on found botted down; loose panel walls thrown out. Decay broken off. Branches broken from trees. Change temperature of springs and wells. Cracks in wet g		Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.	
	IX	Heavy Damage	General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluvial areas sand and mud ejected, earthquake fountains, sand craters.	
7.0 and greater	eater Damage foundations. Some well-built wooden structures and bridge destroyed. Serious damage to dams, dikes, embankments Large landslides. Water thrown on banks of canals, rivers,		foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and	
XI Rails bent greatly. Underground pipelines complet service.		Rails bent greatly. Underground pipelines completely out of service.		
	XII Damage nearly total. Large rock masses displaced. Lines sight and level distorted. Objects thrown into the air.		Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.	
together by u Masonry B: forces. Masonry C: comers, but i	using ste Good wo Ordinary neither n	el, concrete, etc rkmanship and r workmanship ar einforced nor de:	ar, and design; reinforced, especially laterally, and bound ;; designed to resist lateral forces. nortar; reinforced, but not designed in detail to resist lateral nd mortar; no extreme weaknesses like failing to tie in at signed against horizontal forces. adobe; poor mortar; low standards of workmanship; weak	

Masonry D: Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

Seismic Hazard and Seismic Risk

The probability of occurrence of a potentially damaging phenomenon is known as a hazard. The term "seismic hazard" describes the potential for occurrence of an earthquake related natural phenomena such as ground shaking and liquefaction (Reiter, 1990). Results of a seismic hazard analysis include ground motion parameters such as peak ground acceleration and peak ground velocity.

Seismic risk is the probability of occurrence of seismic hazard related consequences such as damage to infrastructures and loss of life (Reiter, 1990). Results of a seismic risk assessment include probability of damage and probability of fatalities. In order to assess the seismic risk of an area the seismic hazard of the area must first be assessed.

Effects of Earthquakes on Buildings

The primary effect to a building or infrastructure during an earthquake is shaking. Generally building structures have the ability to withstand vertical forces to some extent, but building structures are not generally built to take lateral forces which occur during an earthquake (Stewart, 1994). Structural characteristics like natural period, damping, ductility, stiffness, drift, and building configuration play very important roles in how a building behaves during an earthquake.

The damage due to an earthquake differs from building to building. Some of the parameters that control the degree of damage due to an earthquake to a structure include the building structural type, age of the building, building configuration, construction materials, site condition and non structural elements of the structure. Damage to a

building can be structural or nonstructural (FEMA 154). Damage to a building's structural support system (building frames and walls) causes structural damage where as damage to non-structural elements such as ceilings and windows are called non-structural damage.

Different types of buildings

Damage to a building due to an earthquake largely depends on the construction material and the technique used. Depending on the construction material, buildings can be divided in to several categories. Different types of construction material include wood, masonry, concrete, steel, brick or a combination of more than one of these materials.

Buildings constructed using wood

Buildings constructed using wood (Figure 6) usually performs well during an earthquake due to light weight, low rise and structural system used (FEMA 154). Lack of connection between the foundation and superstructures causes the most damage to this type of buildings.

Figure 6 Example for a building constructed using wood - Computer Based Testing Center at MSU

Buildings constructed using masonry

Masonry buildings (Figure 7) can be reinforced masonry or unreinforced masonry depending on the material used. Reinforced buildings can perform well in moderate earthquakes, but unreinforced buildings perform poorly during an earthquake (FEMA 154).

Figure 7 Example for a building constructed using masonry - The Lee Hall at MSU

Buildings constructed using concrete

Buildings constructed using concrete (Figure 8) can have concrete moment resisting frames, concrete shear walls, concrete frames with unreinforced masonry infill walls etc. (FEMA 154). Performance of this type of buildings during an earthquake can vary widely.

Buildings constructed using steel

Buildings constructed using steel (Figure 9) can have steel moment resisting frames, braced steel frames, steel frames with cast-in place concrete shear walls, etc.. Damages to this type of buildings include broken connections between the beams and columns, and shear cracking (FEMA 154).

Figure 8 Example for a building constructed using concrete - Allen Hall at MSU

Figure 9 Example for a building constructed using steel – New Construction near Coliseum at MSU

Terminology

Peak ground acceleration (PGA)

PGA is the maximum level of vertical or horizontal ground acceleration caused by an earthquake. The rate of change in motion of the earth's surface is expresses as a percent of the acceleration due to gravity (9.8 m/sec² or 32.15 ft/sec²). The approximate relationship between MMI and PGA is illustrated in Table3.

Table 3Approximate relationship between MMI and PGA

MMI	Acceleration	Perceived shaking	Potential Damage
	(%g) (PGA)		
Ι	<.17	Not Felt	None
II,III	.17 – 1.4	Weak	None
IV	1.4 - 3.9	Light	None
V	3.9 – 9.2	Moderate	Very Light
VI	9.2 - 18	Strong	Light
VII	18 - 34	Very Strong	Moderate
VIII	34 - 65	Severe	Moderate to Heavy
IX	65 - 124	Violent	Heavy
X, XI, XII	>124	Extreme	Very Heavy

Spectral acceleration

The spectral acceleration is what is experienced by a building during an earthquake as modeled by a particle on a massless vertical rod having the same natural period of vibration as the building. Spectral acceleration can be used as a better indicator of damage to specific buildings types and heights.

Damage state probabilities

The probability of occurrence of specific damage to a target is expressed as a percentage or as a decimal.

Capacity curve

A capacity curve (Figure 10) is a plot of a building's lateral load resistance as a function of a characteristic lateral displacement which is used to model the strength of the building.

Yield capacity represents the true lateral strength of the building. Ultimate capacity implicitly accounts for loss of strength due to shear failure of brittle elements.

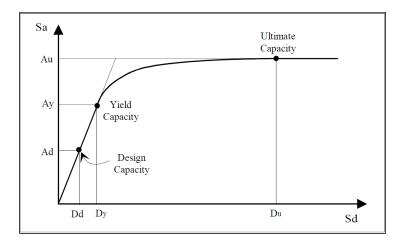


Figure 10 Example for a building capacity curve where Sd represents the spectral displacement and Sa represents the spectral acceleration (From HAZUS Technical Manual)

Fragility curve

Fragility curve (Figure 11) describes the probability of being in a specific damage state as a function of the size of earthquake. Structural fragility curves model the structural behavior of the building when subject to ground shaking and express damage as a function of building displacement.

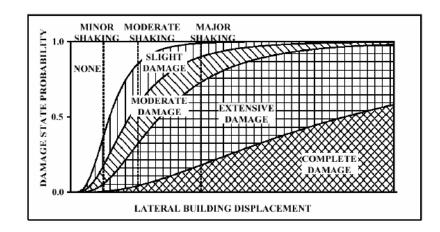


Figure 11 Example for a building fragility curve (From HAZUS Technical Manual)

Seismic Standards for Buildings

Recent earthquakes in the United States and throughout the world show that seismically designed buildings can reduce the damage from an earthquake. The earliest seismic design code in the United States is the Uniform Building Code (Building Seismic Safety Council, 1990) which was introduced in 1927 (Olshansky, 1993). The National Bureau of standards, the Applied Technology Council, the National Earthquake Hazard Reduction Program, the Building Seismic Safety council, and the National Institute of Standards and technology are some of the organizations that played important role in seismic designs of buildings beginning in mid 1970s. By 1990 the law required all new structures owned, leased regulated, or receiving assistance from the federal government to meet accepted seismic design standards.

As of 1993 the state of Mississippi does not have a state building code requirement (Olshansky, 1993), but some of the counties have adopted the standard building code (SBC). In 2006 the Mississippi building codes council adopted the 2003 International Building Code and 2003 International Residential Code for the state, but local jurisdictions have the power to enforce it and to decide on seismic provisions.

New Madrid Seismic Zone

The New Madrid seismic zone (NMSZ) is the most seismically active area in North America east of the Rocky Mountains (Tuttle and Schweig, 1995). The seismic zone is known as the source area of three to five great earthquakes that took place during 1811 and 1812 which are among the largest known intraplate earthquakes (Johnston and Kanter, 1990). The NMSZ is in the northern part of the Mississippi embayment, and spreads to southeastern Missouri, northeastern Arkansas, northwestern Tennessee, southeastern Kentucky, and southern Illinois (Figure 12). The Structure of the NMSZ is related to the Reelfoot rift (Johnston and Schweig, 1996). The Reelfoot rift was formed in the time period that spans from late Precambrian to early Cambrian (Braile et al., 1986). It is a result of a continental breakup and has been reactivated by compressional or tensional stresses related to plate tectonic interactions (Braile et al., 1986). Previous studies on the fault of NMSZ conclude that the fault of NMSZ is segmented (Hough and Martin, 2002) (Figure 13). The New Madrid fault system contains two types of faults, a strike slip segment oriented to the northeast, running from Marked Tree, Arkansas to Caruthersville, Missouri, and a northwest trending reverse fault that rests below the New Madrid region

The geologic record of the NMSZ reveals that it has produced major earthquakes over the past 4,500 years (Frankel et al., 2009). Sand blow deposits that are found buried within the Mississippi River valley are believed to be the by-products of large earthquakes that occurred in the past. These sand blows provide evidence for earthquakes occurring as far as A.D. 1450 and A.D. 900 (Frankel et al., 2009).

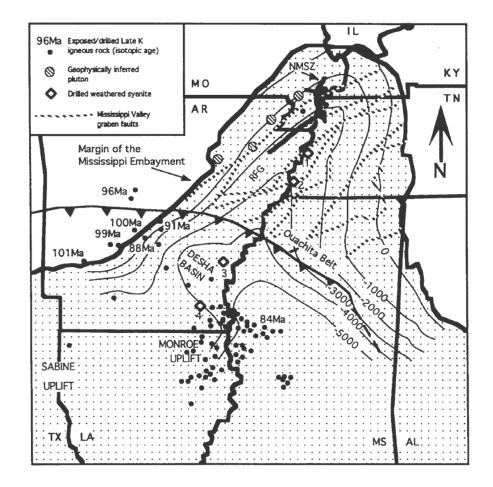


Figure 12 Location of NMSZ within Mississippi embayment (After Cox and Arsdale, 1997).

Contours are top of the Paleozoic section (in feet subsea) (after Cushing et al., 1964), faults related to the Mississippi Valley graben systems after Johnson et al.(1994), geophysically inferred late Mesozoic plutons after Hildenbrand et al.(1982), and exposed or drilled Late Cretaceous igneous rocks after Kidwell (1951) and Morris (1987); RFG, Reelfoot Graben

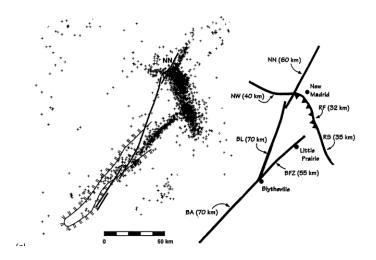


Figure 13 Fault segmentation of the NMSZ (After Johnston and Schweig (1996))

The seismic activities in the NMSZ include the New Madrid- Missouri earthquake sequence that occurred from 1811 to 1812 with a maximum magnitude of 8. The earthquakes of 1811-1812 began in the December of 1811 and continued into the spring of 1812, producing three principal shocks (Nutti, 1973, Hough et al., 2000). The three principal mainshocks occurred at approximately 02:15 local time on 16 December 1811; around 08:00 on 23 January 1812, and approximately 03:45 on 7 February 1812 (Hough and Martin, 2002). Two smaller earthquakes occurred in 1843 in Marked Tree, Arkansas (M=6.3), and in 1895 Charleston, Missouri (M=6.6) (Figure 14).

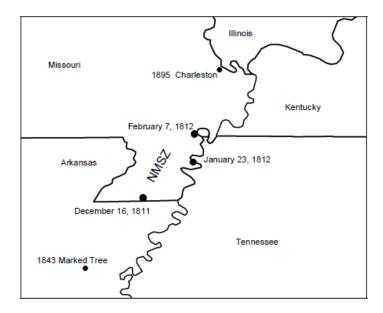


Figure 14 Approximate Locations of NMSZ Earthquakes with M≥6.0 since 1700 (After Kochkin and Crandell, 2003)

Although earthquake mainshocks are important for hazard assessment, the largest aftershocks are also very important. Some of the large aftershocks that occurred in the NMSZ were among the largest earthquakes that occurred in the central United States (Hough and Martin, 2002). Two of the largest aftershocks of 1811-1812 New Madrid earthquakes include the aftershock that occurred in the early hours of 16 December 1811and one in 17 December 1811(Hough and Martin, 2002). Approximately 7.0 and 6.1 magnitude values were assigned for these two aftershocks respectively.

Hough and Martin (2002) suggest an epicenter in the north central part of the Mississippi, well away from the southern end of the NMSZ for the second aftershock. According to Hough and Martin (2002) "Considering the aftershock and remotely triggered earthquake sequences generated by other large earthquakes" (e.g., Bodin and Gomberg, 1994; Hough, 2001; Meltzner and Wald, 2001), a large aftershock with a considerable magnitude can occur at this distance from its mainshock. "The hazards

associated with future large New Madrid mainshocks therefore include, a significant additional hazard associated with large aftershocks that occur outside the New Madrid Seismic Zone" (Hough and Martin, 2002).

One school of thought regarding the NMSZ is that the zone is shutting down as shown by the Global Positioning System (GPS) readings. According to Newman (1999) Global Positioning System measurements across the New Madrid Seismic Zone show little or no motion within uncertainties, which is consistent with plate wide GPS data away from the NMSZ. Newman (1999) also suggests that "the hazard posed by great earthquake in the NMSZ appears to be overestimated".

The U.S. Geological Survey conducted a workshop in 2006, which brought together experts to evaluate the latest findings in earthquake hazards in the Eastern United States. Considering the geologic records, continuing seismic activity and the intraplate settings experts did not find the GPS data to be a convincing reason to lower the risk of earthquake in the NMSZ. According to the USGS "Earthquake Hazard in the New Madrid Seismic Zone Remains a Concern" and these short term observations made using GPS, though important, needs to consider in the context of tectonic processes developed over thousands to millions of years. The USGS also pointed out that the New Madrid region is located in the middle of the North American tectonic plate and in contrast to plate boundary settings where continuous deformation can be measured at the surface; the NMZS will experience little deformation, during the period between large earthquakes.

More than 3,000 earthquakes have occurred in the NMSZ since 1974 to 1996 (Johnston and Schweig, 1996). Different scientific communities use different techniques to calculate the return period of NMSZ earthquakes. The USGS and scientists at the

Center for Earthquake Research and Information (CERI) of the University of Memphis estimate the chance of having an earthquake similar to one of the 1811–1812 sequence in the next 50 years, is about 7 to 10 percent, and the chance of having a magnitude 6 or larger earthquake in the next 50 years is 25 to 40 percent. However, according to Hildenbrand et al. (1996), the chance of a magnitude 6 or 7 earthquake occurring within the next 50 years is roughly 90 percent.

Earthquake History of Mississippi

The state of Mississippi has experienced many shocks from earthquakes including those which occurred in neighboring states. Although the greatest risk to the state of Mississippi from earthquakes is from the NMSZ, number of small earthquakes have centered within the state of Mississippi (Table 4 and Figure 15).

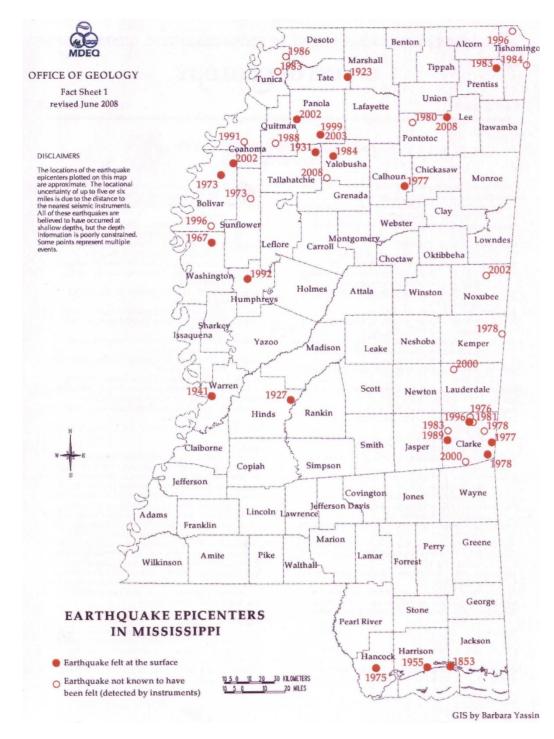


Figure 15 Earthquake epicenters in Mississippi (From Bograd, 2008).

Date	Magnitude	Intensity	Location
09/11/1853			Biloxi
03/27/1923		IV	Wyatte, Tate County
11/13/1927		IV	Jackson
12/16/1931	4.7	VI-VII	Batesville-Charleston
06/04/1967	3.8	VI	Greenville
06/29/1967	3.4	V	Greenville
01/08/1973	3.5		Sunflower County
05/25/1973			Boliver County
09/09/1975	2.9	IV	Hancock County
10/23/1976	3.0		Northeren Clarke County
05/03/1977	3.6	V	Southeren Clarke County
11/04/1977	3.4	V	Vardaman, Calhoun County
01/08/1978	3.0		Kemper County
06/09/1978	3.3		Eastern Clarke County
11/10/1978	3.5	V	Southeastern Clarke County
10/12/1980	2.1		Northwestern Pontotoc Conty
02/15/1981	2.4		Clarke County
01/29/1983	2.4		Northeastern Prentiss County
02/05/1983	2.9	V	Northeastern Prentiss County
04/25/1983	1.6		Tunica County
05/30/1983	2.4		Western Clarke County
03/23/1984	2.0		Tishomingo County
09/24/1984	2.5		Northwestern Yalobusha County
05/11/1986	1.6		Northeastern Tunica County
08/01/1988	2.1		Quitman County
08/23/1989			Pachuta, Clarke County
08/25/1989			Pachuta Clarke County
11/26/1989			Pachuta Clarke County
02/11/1991	2.7		Clarksdale, Coahoma County
12/11/1992	2.4		Belzoni, Humphreys County
03/25/1996	3.5		Clarke County
05/13/1996	2.7		Northern Tishomingo County
08/11/1996	3.1		Southern Bolivar County
02/24/1999	2.8	IV	Southern Panola County
01/28/2000	2.7		Shubuta, Clarke County
10/10/2000	2.3		Northwestern Lauderdale County
01/06/2002	2.2		Near Brooksville, Noxubee
			County
08/11/2002	2.8		Western Panola County
10/26/2002	3.1		Northern Bolivar County
02/26/2003			Courtland, Panola County
01/20/2008	1.7		Southwestern Yalobusha County
05/10/2008	3.1		Belden, Lee County

Table 4Earthquakes in Mississippi (After Bograd, 2008).

According to the United States Geological Survey earthquake records the earliest and strongest earthquake reported within the state of Mississippi occurred on December

16, 1931, at about 9:36 p.m. at Charleston (intensity VI - VII). The shock was felt over a 168,349 square kilometers (65,000 square miles) area including the northern two-thirds of Mississippi and adjacent states (Hake, 1974).

Many people along an 18.75 kilometer (30 mile) strip of the Mississippi Gulf Coast strongly felt an earthquake on February 1, 1955 (Hake, 1974). In Gulfport, houses shook, windows and dishes rattled and deep rumbling sounds were heard by many (intensity V). The tremor was reported at Bay of St. Louis, where buildings creaked and loose objects and windows rattled.

In June 1967, two earthquakes occurred about 11.25 kilometers (18 miles) northeast of Greenville, Mississippi. The first, on June 4, measured magnitude 3.8 on the Richter scale and was felt over approximately 64,750 square kilometers (25,000 square miles). On June 29, a second earthquake occurred in the same region with a magnitude of 3.4. The felt region of this shock was limited to parts of Bolivar, Sunflower, and Washington Counties (Hake, 1974).

One of the aftershocks of 1811- 1812 New Madrid earthquakes occurred on 17 December 1811 and is believed to have occurred in Mississippi, over 200 kilometers (320 miles) southeast of the NMSZ. Magnitude of this aftershock is approximately 6.1 ± 0.2 (Hough and Martin, 2002). Hough and Martin (2002) suggest an optimal location for the event, in north central Mississippi, at 34.6N, 89.2W (Figure 16). However, considering the overall distribution of shaking effects the location was concluded to be at least as far south as the Chickasaw Bluffs (35.1N, 90.0W) (Hough and Martin, 2002). According to available records the Mississippi River Valley was sparsely populated (Figure 17) to the south of New Madrid at the time (Anderson, 1937) and no damages were recorded during this event. Details about the aftershock (Table 5) are from those who were on the boats

on the Mississippi River at the time of the event. John Bradbury describes the aftershock (Bradbury, 1819, p. 205) "We did not experience any more shock(s) until the morning of the 17th, when two occurred; one about five and the other about seven o'clock. We continued our voyage, and about twelve that day, we had a severe shock, of long duration." William Pierce (Street, 1984) wrote of a "long and dreadful shock that appeared threatening at 5 after 12 meridian.

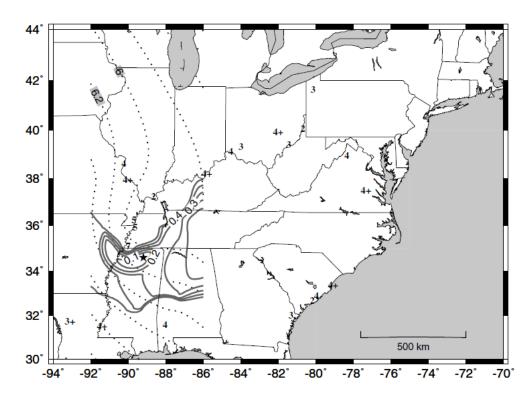


Figure 16 Location and estimated Modified Mercalli Intensity values for 17th December 1811 aftershock (Hough and Martin, 2002).

Note:Values immediately along the Atlantic coast line are shifted west by 0.2 degrees for clarity

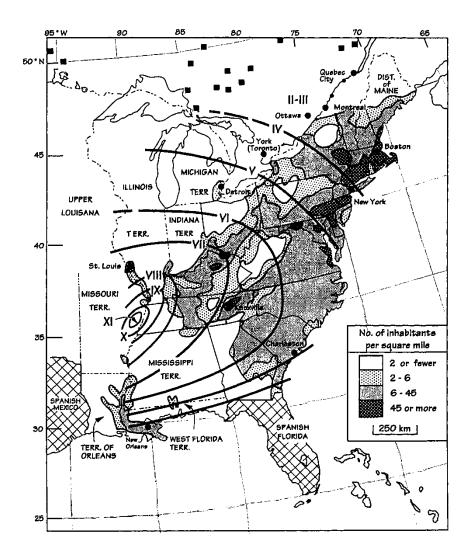


Figure 17 Historical setting in 1811-1812 (After Johnston and Schweig (1996))

Note: States of the Union have continuous borders, territory and district borders have dash-dot borders, and Spanish possessions are cross- hatched. Population density for the US is for 1810 (Garrett, 1988)

Table 5Accounts of 17 December 1811 aftershock (After Hough and Martin (2002))

Location	Longitude	Latitude	MMI	Report
Charleston, South Carolina	- 79.97	32.90	3	"sensibly felt" by those at rest
Chickasaw Bluffs, Tennessee	-90.00	35.10	7.0	one of 3 strongest shocks felt
Chillicothe, Ohio	-83.00	39.35	3	slight
Cincinnati, Ohio	-84.52	39.16	4	"strong," "fourth class"
Columbia, South Carolina	-79.97	32.90	4	"smart shock"
Fort Massac, Illinois	-88.65	36.25	2	lightly felt
Fort St. Stephens, AL	-87.98	31.60	4	house shaken
Georgetown, South Carolina	-78.78	33.38	4.5	"severe," no damage
Louisville, Kentucky	- 85.73	38.18	4.5	"strong to intense"
Marietta, Ohio	-81.45	39.42	3	lighter than mainshock
Meadville, Pennsylvania	-80.12	41.63	3	lighter than mainshock
Mississippi (Pierce)	-89.70	36.25	5	"long and dreadful"
Mississippi	-89.68	36.00	4.5	"heavy," trees shaken
Mississippi (Bradbury)	-89.63	35.93	5	"severe," long duration
Natchez, Mississippi	-91.38	31.55	4.5	some clocks stopped
Natchitoches, Louisianna	-93.10	31.75	3.5	felt, less severe than mainshock
New Bourbon, Missouri	-90.05	37.98	4.5	"severe," no damage described
Richmond, Virginia	-77.33	37.50	4.5	"violent," no damage described
Saint Louis, Missouri	-90.38	38.75	4	"smart shock"
Savannah, Georgia	-81.13	32.03	3	felt
Strasburgh, Virginia	-81.13	32.03	4	"severe," no damage
Wheeling, West Virginia	-80.70	40.08	2	"faint"
Zanesville, Ohio	-82.01	39.95	4.5	church steeple agitated

Prior Research

According to Federal Emergency Management Agency (FEMA), the Oktibbeha county of the state of Mississippi is located within a region that has a moderate seismic activity (Figure 18). FEMA claims that if earthquakes occur in the New Madrid Seismic Zone (NMSZ), they would cause "the highest economic losses due to a natural disaster in the United States" (Elnashai et. al, 2008). In such an event, economic loss due to business interruption and loss of market share, would incur approximately a \$9.5 billion loss in Mississippi. Due to the possibility of an earthquake risk from the New Madrid Seismic zone, emergency management agencies of Mississippi, Tennessee, Kentucky, Indiana, Illinois, Missouri, and Arkansas formed the Central United States Earthquake Consortium (CUSEC) and developed a map illustrating areas of greater vs. lesser risk

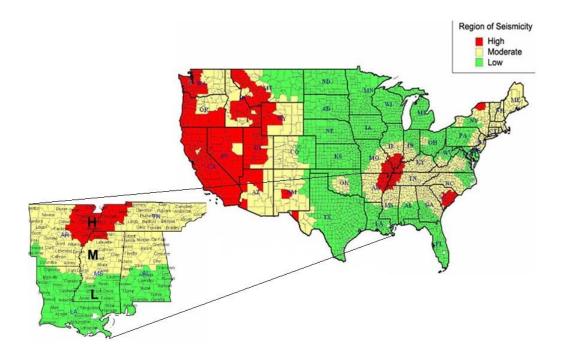


Figure 18 Seismicity of Oktibbeha County according to FEMA studies.

from seismic induced ground motions (Bograd, 1997). According to this map Mississippi State University is built upon an area with higher potential for enhanced ground shaking.

Risk Management Solutions Inc. and Michael Baker Corporation jointly conducted a study on the application of the HAZUS earthquake model to the New Madrid Earthquake zone for CUSEC. The study was focused on greater Memphis area and the results of the study provide quantitative losses upon an earthquake. The study emphasizes the importance of HAZUS as a modeling method in earthquake risk assessments.

Hwang, (Hwang et al., 1995) studied seismic vulnerability on the University of Memphis Campus. Information for each building including facility code, year of construction, type of construction, and replacement value were used to study seismic

vulnerability. Results of Hwang, (1995) indicated how an earthquake will affect each building.

In 1997, Mississippi Emergency Management Agency, Central United States Earthquake Consortium, University of Mississippi Schools of Engineering, the Minerals Resource Institute and the Mississippi Department of Geology has conducted a structural evaluation of the buildings and a geological study of University of Mississippi.

Snodgrass, (1998) conducted an earthquake site analysis of Mississippi State University. The objective of the study was to evaluate primary ground surface responses of three sites on the University using WESHAKES response analysis software. Results suggested spectral peak ground accelerations range of 0.57g to a 0.65g generated from a 6.2 and a 8.25 magnitude earthquake events at an epicentral distance of approximately 250 kilometers (400 miles). The study also demonstrated that possible damage to the campus could be in the order of ten percent.

In a related study, from a completely different geographic region, Gulati, (2006) conducted a study on "Earthquake Risk Assessment of Buildings: Applicability of HAZUS in Dehradun, India". According to his findings the HAZUS methodology can be adopted and implemented in India, but requires attention to the nature of potential ground motion and the non-linear behavior of the structural components.

Schweig, (2007) used an earthquake scenario to estimate total county building losses in the southwest portion of the New Madrid zone. Although the study region did not include Oktibbeha county, neighboring counties have direct economic loss about 25 – 50 million dollars.

Considering the possibility of an earthquake and the fact that Mississippi State University was not included in any of the previous risk assessment studies, indicate that there is a need for a risk assessment of the University.

Hypothesis

There is a risk to buildings at Mississippi State University being damaged by an earthquake of magnitude seven or greater occurring in the New Madrid Seismic Zone in near future. The analysis of such a risk can be performed using the HAZUS software package.

Objective

The main objective of the earthquake risk assessment is to understand the seismic risk from New Madrid Seismic zone to the Mississippi State University and to evaluate the response of buildings from an earthquake.

CHAPTER III

METHODS

The process of earthquake risk assessment of the Mississippi State University (MSU) can be divided in to four phases.

- 1. Identifying the probability of a hazard
- 2. Profiling a hazard event
- 3. Making an inventory of the assets
- 4. Estimation of losses

Data gathered in each of these phases can be combined to assess the risk of an earthquake upon structures at MSU.

The first phase of the earthquake risk assessment of MSU was the identification of the probability of the hazard. The process begins with gathering information about past seismic events in and around MSU and finding the probabilities and the magnitudes of the next major seismic events that could possibly occur in near future. Details regarding the magnitude and frequency of seismic events that occurred in New Madrid Seismic Zone and the State of Mississippi in the past were obtained from United States Geological Survey (USGS) and from available literature. Probability of occurrence of a major seismic event in the near future that can impact MSU was obtained from available literature.

The next phase of the risk assessment process was profiling a hazard event. This step includes creation of a digital map of the MSU and the determination of the peak

ground acceleration of the ground on which the MSU is located. A digital map of the MSU buildings was obtained from the department of Geosciences at MSU (Personal communication with Dr. Wax). Geographical information obtained from the Mississippi Automated Resource Information System (MARIS) technical center, was also incorporated into the digital map of the MSU. The response of geologic deposits in a seismic event at Mississippi State University was evaluated in an earlier study using a computer based program called WESHAKE5 (Snodgrass, 1998). Snodgrass studied three locations within the campus and determined each site's natural low strain dynamic period, peak ground acceleration and peak amplifications from ground motion.

The third step of the earthquake risk assessment is making an inventory of assets. Information regarding building structural type (wood, brick, concrete etc...), height of the building, number of stories, building code design level, date of construction, and replacement value was obtained from the Department of Facilities Management.

The information gathered in the first three steps are input in the HAZUS software program which then analyzes the data and calculates potential loss for MSU due to an earthquake originating in the New Madrid Seismic Zone.

HAZUS (HAZards United States)

HAZUS is risk assessment software developed by Federal Emergency Management Agency (FEMA). It is freely available from FEMA's publication warehouse. HAZUS uses geographic information systems technology together with scientific and engineering knowledge to perform risk assessments due to natural disasters, namely earthquakes, floods and wind.

HAZUS software uses census tracts to aggregate population information. Census tracts are divisions of land that has about 2500-8000 inhabitants with relatively homogeneous population characteristics, economic status and living conditions. The census data are used to estimate direct social loss due to displaced households and casualties due to earthquakes (HAZUS Technical Manual). There are three levels of analysis available in the HAZUS. For the purpose of this project the first and second levels of analysis were conducted.

1. Default Data Analysis:

The data needed to input, and run the program at this level can be obtained from government agencies and published information. The census data are based on the 2000 census and 2006 Dun and Bradstreet data (HAZUS Technical Manual). Results obtained from an analysis at this level will not be extremely accurate.

2. User-Supplied Data Analysis:

This is the most commonly used analysis type. Loss estimates are based on inventories that are provided by the user. This is a more accurate calculation compared to the former analysis.

3. Advanced Data and Models Analysis:

This type of analysis incorporates results from engineering and economic studies carried out using methods and software not included within the methodology. There are no standardized Advanced Data and Models Analysis studies (HAZUS Technical Manual).

Earthquakes produce ground motion and ground failures. For computation of ground shaking parameters, the following inputs are required by HAZUS.

Scenario basis

A basis for ground shaking must be selected by the user from one of three options:

- <u>Deterministic ground motion analysis</u>: In this method deterministic seismic ground motion parameters are calculated for user-specified scenario earthquakes. Magnitude of the event and selected attenuation relationships are used to calculate ground shaking parameters.
- <u>USGS probabilistic ground motion maps (maps supplied with HAZUS-MH)</u>: In probabilistic analysis procedure, the ground shaking is characterized by spectral contour maps developed by the USGS
- 3. <u>Other probabilistic or deterministic ground motion maps</u>: In this method usersupplied peak ground acceleration (PGA) and spectral acceleration contour maps are used with the maps available in HAZUS.

Attenuation relationship

The attenuation of ground shaking with increasing distance from the source is modeled using attenuation functions in HAZUS. Therefore the selection of a suitable attenuation function is crucial for the analysis. Depending on the choice of attenuation functions, the ground shaking can be different for a specific location for the earthquake with same magnitude (Figure 19).

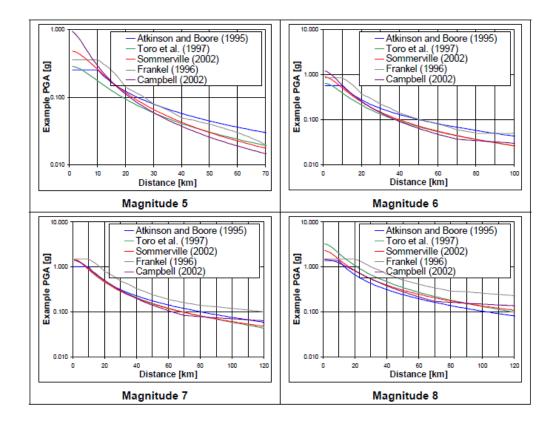


Figure 19 Relationship between Attenuation functions, Moment of magnitude of an earthquake, Distance and Peak Ground Acceleration (HAZUS Technical Manual).

Soil map

Soil type is important in determination of impact due to an earthquake. Stiffness of the soil affects the velocity of earthquake wave. Generally in a stiff or hard soil waves will travel at a higher velocity. If the soil is soft (low in stiffness) waves generally have low velocities. Slower velocities of waves will results in modification of seismic energy and greater damages due to earthquakes than higher velocities.

The HAZUS user can supply a detailed soil map that suits the specific site or specify the type of soil for an area. In the absence of details, HAZUS-MH will amplify the ground motion parameters assuming class D soil at the sites (Table 6).

Site	Site Class Description	Shear Wave V	Shear Wave Velocity (m/sec)			
Class		Minimum	Maximum			
А	Hard Rock	1500				
В	Rock	760	1500			
С	Very Dense Soil and Soft Rock	360	760			
D	Stiff Soils	180	360			
Е	Soft Soils		180			
F	Soils Requiring Site Specific Ev	aluations				

Table 6Soil Classes (HAZUS- MH MR3 Technical Manual)

Selection of representative design level

The user has to select the seismic design level of buildings considered appropriate for the study region and to define a mix of seismic design levels for each model building type (Table 7 and Figure 20). Design level is related to the important changes in building designs that controls the behavior of building in a seismic event.

Table 7HAZUS MH Guidelines for selection of damage functions for buildings
based on seismic zone and building age (HAZUS MH-MR3 Technical
Manual)

UBC Seismic Zone	Post 1975	1941-1975	Pre 1941
Zone 4	High Code	Moderate Code	Pre Code
Zone 3	Moderate Code	Moderate Code	Pre Code
Zone 2B	Moderate Code	Low Code	Pre Code
Zone 2A	Low Code	Low Code	Pre Code
Zone 1	Low Code	Pre Code	Pre Code
Zone 0	Pre Code	Pre Code	Pre Code

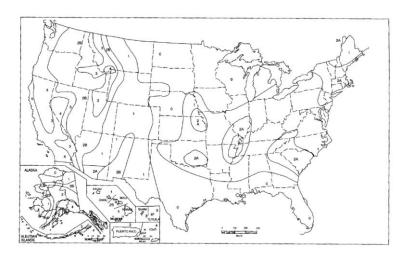


Figure 20 Map showing UBC seismic zones of United States

Selection of building type

The HAZUS user can select the building structure or model building type for a user defined building. There are 36 model building types listed in HAZUS as shown in Table 8.

Table 8Building structure (Model Building Types) listed in the HAZUS MH-MR3
(From HAZUS User Manual)

				Height					
No.	No. Label	Description	Rang	ge	Турі	cal			
			Name	Stories	Stories	Feet			
1	W1	Wood, Light Frame (≤ 5,000 sq. ft.)		1 - 2	1	14			
2	W2	Wood, Commercial and Industrial		All	2	24			
		(> 5,000 sq. ft.)				-			
3	S1L		Low-Rise	1 - 3	2	24			
4	S1M	Steel Moment Frame	Mid-Rise	4 - 7	5	60			
5	S1H		High-Rise	8+	13	156			
6	S2L		Low-Rise	1 - 3	2	24			
7	S2M	Steel Braced Frame	Mid-Rise	4 - 7	5	60			
8	S2H		High-Rise	8+	13	156			
9	S3	Steel Light Frame		All	1	15			
10	S4L		Low-Rise	1 - 3	2	24			
11	S4M	Steel Frame with Cast-in-Place	Mid-Rise	4 - 7	5	60			
12	S4H	Concrete Shear Walls	High-Rise	8+	13	156			
13	S5L		Low-Rise	1 - 3	2	24			
14	S5M	Steel Frame with Unreinforced	Mid-Rise	4 - 7	5	60			
15	S5H	Masonry Infill Walls	High-Rise	8+	13	156			
16	CIL		Low-Rise	1 - 3	2	20			
17	C1M	Concrete Moment Frame	Mid-Rise	4 - 7	5	50			
18	C1H		High-Rise	8+	12	120			
19	C2L		Low-Rise	1 - 3	2	20			
20	C2M	Concrete Shear Walls	Mid-Rise	4 - 7	5	50			
21	C2H		High-Rise	8+	12	120			
22	C3L		Low-Rise	1-3	2	20			
23	C3M	Concrete Frame with Unreinforced	Mid-Rise	4 - 7	5	50			
24	C3H	Masonry Infill Walls	High-Rise	8+	12	120			
25	PC1	Precast Concrete Tilt-Up Walls		All	1	15			
26	PC2L		Low-Rise	1-3	2	20			
27	PC2M	Precast Concrete Frames with	Mid-Rise	4 - 7	5	50			
28	PC2H	Concrete Shear Walls	High-Rise	8+	12	120			
29	RM1L	Reinforced Masonry Bearing Walls	Low-Rise	1-3	2	20			
30	RM2M	with Wood or Metal Deck	Mid-Rise	4+	5	50			
		Diaphragms							
31	RM2L	D · · · · · · · · · · · · · · · · · · ·	Low-Rise	1 - 3	2	20			
32	RM2M	Reinforced Masonry Bearing Walls	Mid-Rise	4 - 7	5	50			
33	RM2H	with Precast Concrete Diaphragms	High-Rise	8+	12	120			
34	URML	The later of the l	Low-Rise	1 - 2	1	15			
35	URM	Unreinforced Masonry Bearing	Mid-Rise	3+	3	35			
	М	Walls							
36	MH	Mobile Homes		All	1	10			

Capacity curves and fragility curves for different seismic zones and different building types are supplied with the HAZUS model. Terminology used in HAZUS to describe the damages to building structures include 'none', 'slight', 'moderate', 'extensive' and 'complete'. Descriptions for each of these damage states for different building types can be found in HAZUS Technical Manual.

CHAPTER IV

RESULTS AND DISCUSSION

Earthquake Risk Assessment with Default Data

Earthquake risk assessment of Mississippi State University was performed using default data supplied with HAZUS software and user supplied data. Although analysis of default data supplied with HAZUS does not include any specific details about damage to MSU, analysis results can be used to understand earthquake risk to the area and to the specific facilities included.

Earthquake scenarios were defined within New Madrid Seismic Zone and within the state of Mississippi.

Earthquake scenario at 35.53N, 90.42W; Marked Tree, Arkansas

An earthquake scenario (deterministic arbitrary event) of magnitude 8.00 was defined at latitude and longitudes 35.53N, 90.42W; Marked Tree, Arkansas. For this analysis CEUS (Central and Eastern United States) was used as the attenuation function with soil type D. Results indicate that there will be no significant ground motion (Figure 21) and hence no significant damage to the Mississippi State University from such an event. According to Nutti (1993) the earthquake on January 4, 1843 in Arkansas had a Modified Mercalli Intensity value VI or higher and caused structural damage in Memphis, Southwest Tennessee, Northeast Arkansas and the extreme Northwest corner of Mississippi. After comparing the results from above analysis and Nutti (1993) it is fair to say that the results from this study shows a little bit lower damage to the state of

Mississippi, due to an earthquake that occurs approximately the same location, but with a higher magnitude.

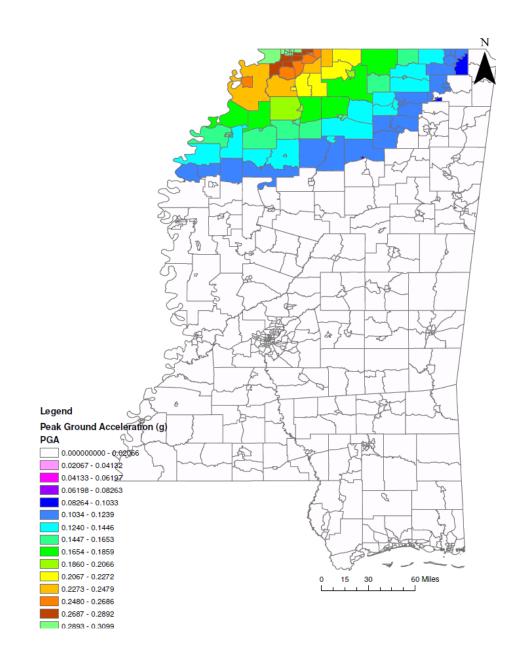


Figure 21 Peak ground acceleration for magnitude 8.0 Earthquake at 35.53N, 90.42W; at Marked Tree, Arkansas (Attenuation function - CEUS, Soil Type- D)

Earthquake scenario at 36.00N and 90.00W; Missouri

Earthquake scenario of magnitude 8.5 was defined using the historical epicenter event database of HAZUS. The epicenter of the earthquake was in Missouri and the latitude and longitude are 36.00N and 90.00W. The results indicate that there will be no significant ground motion or damage to the university from such event.

Earthquake scenario at 34.6N, 89.2W; Benton County, Mississippi

According to Hough and Martin (2002) one of the largest aftershocks of 1811-1812 earthquake series of the New Madrid Seismic Zone centered at 34.6N, 89.2W latitude and longitudes; Benton county, Mississippi. A scenario earthquake of magnitude 7.00 was defined at this location. Depth to the epicenter was considered as 10 kilometers (6.2 miles) and the attenuation function was set to CEUS with soil type D. Spectral acceleration at 0.3 sec (g) (Figure 22) and peak ground acceleration (Figure 23) due to above earthquake scenario shows that there will be an impact to MSU from such event. Spectral acceleration of the Oktibbeha County at 0.3 sec ranges between 0.162g - 0.202g. Peak ground acceleration of the Oktibbeha County generated from the above earthquake scenario ranges between 0.082g - 0.104g (Table 9).

The same earthquake scenario (magnitude 7.00 at 34.6N, 89.2W with soil type D) with a different attenuation function was defined to understand the effect of the attenuation function on the result. The attenuation function used was from Toro et al., and peak ground acceleration (Figure 24) due to such event shows different values than earlier scenario. The peak ground acceleration range of the Oktibbeha County for the earthquake scenario that used CEUS attenuation function is between 0.082g– 0.104g, whereas for the earthquake scenario using Toro et al.'s attenuation function generated a peak ground acceleration range between 0.053g -0.066g (Table 10).

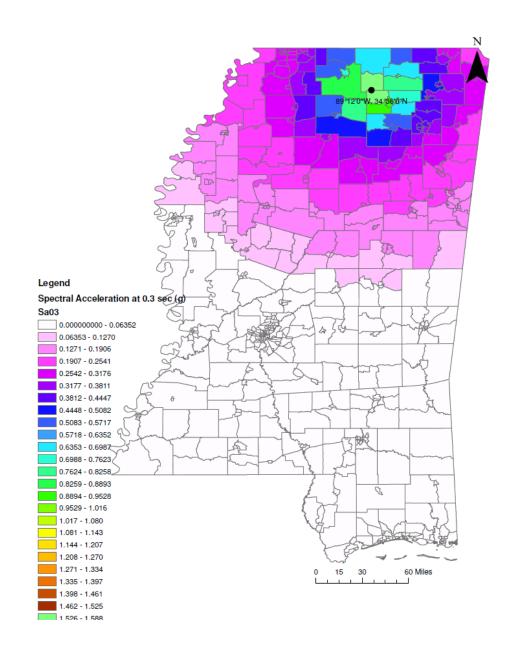


Figure 22 Spectral acceleration at 0.3 sec (g) for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation function-CEUS, soil type D).

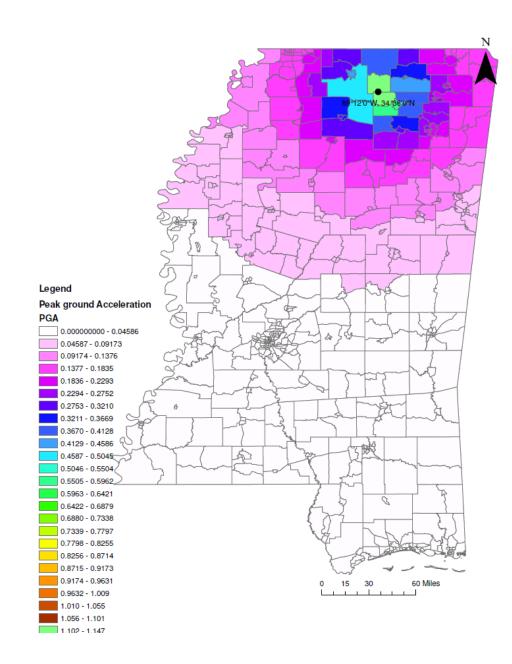


Figure 23 Peak ground acceleration for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation Function-CEUS, Soil Type D).

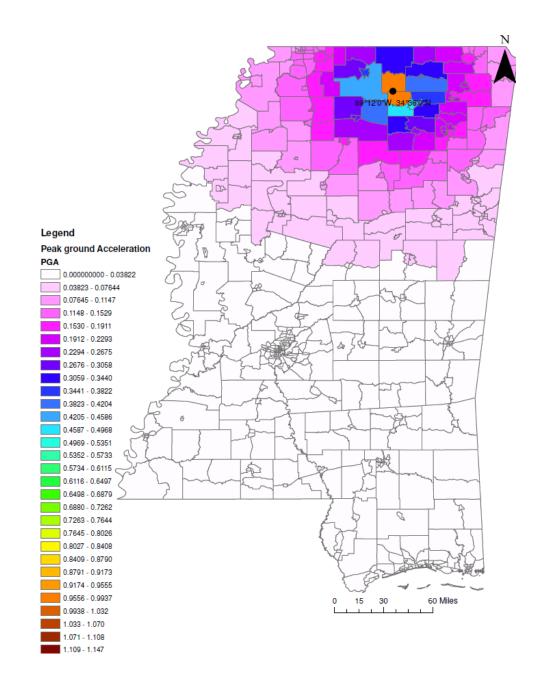


Figure 24 Peak ground acceleration for magnitude 7.00 earthquake at 34.6N, 89.2W (Attenuation Function-Toro et al. (1997), Soil Type D)

Table 9Ground motion parameters for magnitude 7.00 earthquake scenario at
34.6n,89.2w for Oktibbeha county census tracts (Attenuation function
CEUS, soil type D)

Census	Spe	ctral	Spe	ctral	0	ther Ground	Motion Paramete	ers		
Tract	Accele	eration	Displa	Displacement						
	At 0.3	At 1.0	At 0.3	At 1.0	Spectral	Spectral	Peak Ground	Peak		
	sec (g)	sec (g)	sec (in)	sec (in)	Velocity	velocity	acceleration	Ground		
					at 0.3 sec	at1.0 sec	(g)	Velocity		
					(in./sec)	(in./sec)		(in./sec)		
28105950100	0.185	0.111	0.163	1.087	3.416	6.819	0.095	4.160		
28105950200	0.202	0.121	0.178	1.181	3.717	7.410	0.104	4.520		
28105950300	0.194	0.116	0.171	1.138	3.570	7.141	0.100	4.356		
28105950400	0.179	0.107	0.158	1.049	3.302	6.582	0.091	4.015		
28105950500	0.177	0.106	0.156	1.039	3.267	6.517	0.090	3.975		
28105950600	0.171	0.103	0.151	1.006	3.154	6.309	0.087	3.848		
28105950700	0.162	0.098	0.143	0.957	2.994	6.000	0.082	3.660		

Table 10Ground motion parameters for the magnitude 7.00 earthquake scenario at
34.6N,89.2W for Oktibbeha county census tracts (Attenuation function Toro
et al., (1997), soil type D)

Census	Spe	ctral	Spectral	Displacement	Other Ground	Motion Parameters			
Tract	Accele	eration							
	At 0.3	At 1.0	At 0.3	At 1.0 sec	Peak Ground	Peak Ground			
	sec (g)	sec (g)	sec (in)	(in)	acceleration (g)	Velocity (in./sec)			
28105950100	0.106	0.092	0.093	0.900	0.061	3.443			
28105950200	0.114	0.099	0.101	0.969	0.066	3.707			
28105950300	0.107	0.093	0.094	0.911	0.062	3.488			
28105950400	0.104	0.091	0.092	0.891	0.061	3.411			
28105950500	0.103	0.090	0.091	0.879	0.060	3.365			
28105950600	0.098	0.086	0.086	0.841	0.057	3.217			
28105950700	0.091	0.080	0.080	0.786	0.053	3.106			

From CEUS and Toro et al., attenuation functions, use of CEUS will produce the maximum damage due to an earthquake.

If the soil type is not well known for an area, HAZUS uses type D as the soil type to amplify the ground motion parameters. According to Snodgrass, (1998) the average shear wave velocity of the material in which the MSU is located is 785 meters/sec (2575 ft/sec). Considering the velocity and other characteristics, the soil type of the area can be classified as type C (type C is described as very dense soil and soft rock). To understand the changes in ground motion parameters due to different soil types, earthquake scenario with soil type C was defined at the same location (34.6N, 89.2W) with same magnitude (magnitude 7) and same attenuation function (CEUS) as above. When the soil type change from type D to type C values for the peak ground acceleration show a decrease (Table 9 and Table 11). Peak ground acceleration of the Oktibbeha County for the earthquake scenario that uses soil type D is between 0.082g– 0.104g. When soil type C is used the peak ground acceleration is between 0.062g-0.078g. Although the soil type of the area in which MSU is located is known to be type C, soil type(s) of the area between the earthquake epicenter and MSU can vary and are not well known. So it is fair to use soil type D to obtain risk due to an earthquake.

Table 11Ground motion parameters for the magnitude 7.00 earthquake scenario at
34.6N,89.2W for Oktibbeha county census tracts (attenuation function
CEUS, soil type C)

Census	Spe	ctral	Spectral	Displacement	Other Ground N	Iotion Parameters
Tract	Accele	eration				
	At 0.3	At 1.0	At 0.3	At 1.0 sec	Peak Ground	Peak Ground
	sec (g)	sec (g)	sec (in)	(in)	acceleration (g)	Velocity (in./sec)
28105950100	0.139	0.079	0.123	0.770	0.071	2.947
28105950200	0.151	0.085	0.133	0.837	0.078	3.202
28105950300	0.145	0.082	0.128	0.806	0.075	3.086
28105950400	0.134	0.076	0.118	0.743	0.068	2.844
28105950500	0.133	0.075	0.117	0.736	0.068	2.816
28105950600	0.128	0.073	0.113	0.0.712	0.065	2.726
28105950700	0.122	0.069	0.107	0.678	0.062	2.593

There were 11,104 buildings included in the HAZUS default data inventory for Oktibbeha County (Figure 25). Buildings were classified into different categories based on construction materials, namely wood, steel, concrete, Reinforced Masonry, Unreinforced Masonry and Manufactured Home.

According to the results no building in the study was completely damaged by an earthquake scenario of magnitude 7.00 occurring at 34.6N, 89.2W (CEUS attenuation function). Out of 11,104 buildings the majority (that is 9,457 buildings) used wood as the construction material. From the buildings that use wood as the construction material only 7 will have extensive damages due to an earthquake. Most of the buildings (8658) constructed with wood will not have any damage by an earthquake. Only 687 buildings constructed with wood will undergo slight damages due to an earthquake. According to the results (Figure 26) wood and reinforced masonry buildings used in the study have a probability of 0.90 to not being damage by an earthquake.

The earthquake scenario of magnitude 7.00 occurring at 34.6N, 89.2W shows 0.80% loss ratio (Figure 27) for the Oktibbeha County. Although 0.80% is not considered as a huge loss, when it comes to dollars the total direct economic loss is 27,664 thousand dollars (Approximately 27.6 million dollars).

			#	of Buildings		
	None	Slight	Moderate	Extensive	Complete	Total
Mississippi						
Oktibbeha						
Wood	8,658	687	106	7	0	9,457
Steel	27	3	2	0	0	33
Concrete	12	1	1	0	0	14
Precast	13	1	1	0	0	15
Reinforced Masonry	0	0	0	0	0	0
Unreinforced Masonry	337	49	23	4	0	413
Manufactured Home	945	145	74	7	0	1,172
Total	9,992	887	206	19	1	11,104
Region Total	9,992	887	206	19	1	11,104

Figure 25 Summary report from HAZUS for building damage by building count for Oktibbeha County

		Average Damage State							
	None	Slight	Moderate	Extensive	Complete				
Mississippi									
Oktibbeha									
Wood	0.90	0.10	0.00	0.00	0.00				
Steel	0.80	0.10	0.00	0.00	0.00				
Concrete	0.80	0.10	0.00	0.00	0.00				
Precast	0.80	0.10	0.00	0.00	0.00				
Reinforced Masonry	0.90	0.10	0.00	0.00	0.00				
Unreinforced Masonry	0.80	0.10	0.00	0.00	0.00				
Manufactured Home	0.80	0.10	0.10	0.00	0.00				
Total	0.80	0.10	0.00	0.00	0.00				
Region Average	0.80	0.10	0.00	0.00	0.00				

Figure 26 Summary report from HAZUS for building damage by building type for Oktibbeha County

		Capital St	ock Losses			Income Losses				
	Cost Structural Damage	Cost Non-struct. Damage	Cost Contents Damage	Inventory Loss	Loss Ratio %	Relocation Loss	Capital Related Loss	Wages Losses	Rental Income Loss	Total Loss
Mississippi Oktibbeha Total	4,572	11,779 11,779	3,926 3,926	195 195	0.80	147	2,091	2,720 2,720	2,235	27,664
Region Total	4,572	11,779	3,926	195	0.80	147	2,091	2,720	2,235	27,664

Figure 27 Summary report from HAZUS for direct economic losses for buildings at Oktibbeha County

Note: All values are in thousands of dollars

Earthquake Risk Assessment with User Defined Data

Oktibbeha County of the State of Mississippi comprises of seven census tracks, but the majority of the Mississippi State University buildings are within three of those census tracks (Figure 28).

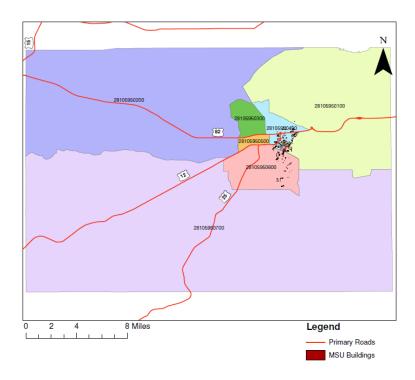


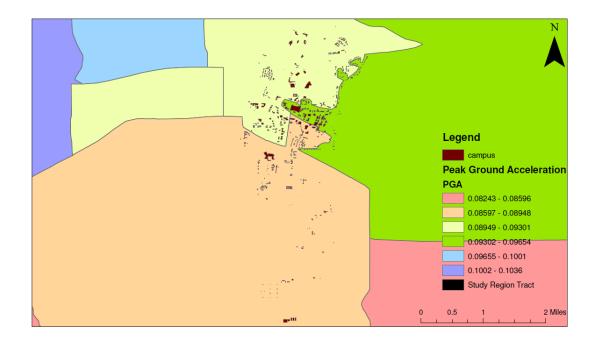
Figure 28 Mississippi State University buildings in different census tracts within Oktibbeha County

Note: Different colors in the figure 28 indicate different census tracts with their name on it. Most of the MSU buildings are within 28105950100, 28105950400 and 28105950600 census tracts.

Only 288 buildings within MSU were used for detailed study. Building

construction type (wood, concrete, steel, masonry), year of construction, area in square

feet, building construction cost and number of stories for buildings in the study were


obtained from 2009, Annual Capital Facilities Study of MSU Physical Plant. Buildings

in the study represent different building structural types commonly found in the study area. User defined data used for the study is listed in appendix A.

Earthquake scenario at 34.6N, 89.2W

An earthquake scenario of magnitude 7.00 was defined at 34.6N, 89.2W (Attenuation function CEUS, soil type D). Analysis of peak ground acceleration of the Oktibbeha County (Figure 29) shows that most of the MSU buildings fall within 0.08597g - 0.09654g. HAZUS uses five different levels for calculation of damage probabilities, namely None, Slight, Moderate, Extensive and Complete.

Figure 29 Peak ground acceleration for census tracts at Oktibbeha county and MSU buildings.

Note: Most of the MSU buildings are in the census tracts colored in green, beige and light yellow with peak ground accelerations ranges 0.09302g - 0.09654g, 0.08597g - 0.08948g and 0.08949g - 0.09301g respectively.

Out of 288 buildings used in the study 95 buildings (Figure 30) are constructed using wood, 74 buildings using steel, 57 buildings using concrete, 55 using reinforced Masonry, 6 buildings using precast concrete and only one building is constructed using unreinforced masonry. Most of the wood buildings (87 out of 95) and reinforced masonry buildings (49 out of 55) have "none" damage probability. That is most of the wood and reinforced buildings at MSU will not experience damages due to an earthquake. Analysis of percentages of different damage probabilities for different building types (Figure 31) indicate that about 85.96% of the buildings will have a "none" damage probability and 0.02% will have a "complete" damage probability.

		# of Buildings								
	None	Slight	Moderate	Extensive	Complete	Total				
Mississippi										
Oktibbeha										
Wood	87	7	1	0	0	95				
Steel	59	9	6	1	0	74				
Concrete	47	7	3	0	0	57				
Precast	5	0	0	0	0	6				
Reinforced Masonry	49	4	2	0	0	55				
Unreinforced Masonry	1	0	0	0	0	1				
Manufactured Home	0	0	0	0	0	0				
Total	248	27	12	2	0	288				
Region Total	248	27	12	2	0	288				

Figure 30 Summary report from HAZUS; building damage count at MSU for different building types in different damage states

		% Distribution by Damage State				
	None	Slight	Moderate	Extensive	Complete	
Mississippi						
Oktibbeha						
Wood	91.73	7.14	1.06	0.07	0.00	
Steel	79.47	11.48	7.63	1.38	0.03	
Concrete	82.21	12.49	4.74	0.52	0.04	
Precast	86.70	8.30	4.61	0.37	0.02	
Reinforced Masonry	88.64	6.70	4.15	0.49	0.01	
Unreinforced Masonry	80.64	12.30	5.87	1.08	0.11	
Manufactured Home	0.00	0.00	0.00	0.00	0.00	
County	85.96	9.27	4.16	0.59	0.02	

Figure 31 Summary report from HAZUS; building damage % distribution by building type at MSU

Damage probabilities for buildings are shown from Figure 32 through Figure 36. The probability of a building not being damage by the scenario earthquake is shown in Figure 32. The buildings which has the highest probability being in 'None' damage category to buildings which has the lowest probability being in 'None'' damage category (the safest to least safe) are shown by red, pink, purple, blue and black in the order of decreasing probability. A building that has a red or a pink dot has a high probability of not being damaged by an earthquake than a building which has a green or a blue dot. Bulldog circle buildings which are constructed with wood and Aiken village buildings which are constructed with concrete are examples for buildings that have high probabilities for not being damage by an earthquake. Most of the buildings which have high probabilities of not being damage by an earthquake are constructed with wood and reinforced masonry. Steel and concrete buildings show lower probabilities of not being damaged by an earthquake. List of different damage probabilities for different buildings is attached as appendix B.

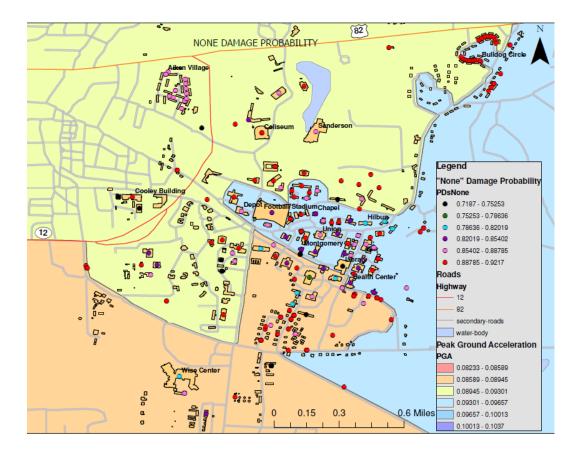


Figure 32 "None" damage probability for selected buildings at MSU

Note: Bulldog circle buildings constructed using wood and Aiken village buildings constructed using concrete has high probability of not being damage by an earthquake

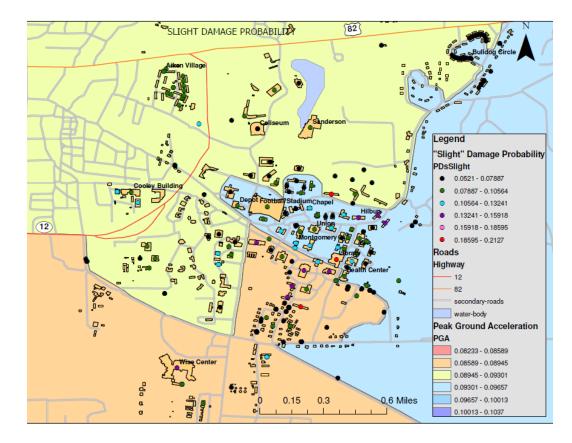


Figure 33 "Slight" damage state probability for selected buildings at MSU

Note: Most of the buildings in the figure have a green or a black dot, indicating most of the MSU buildings have a low probability of being slightly damaged by an earthquake.

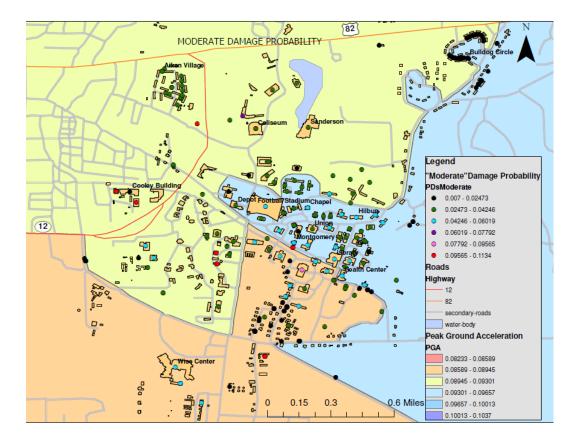
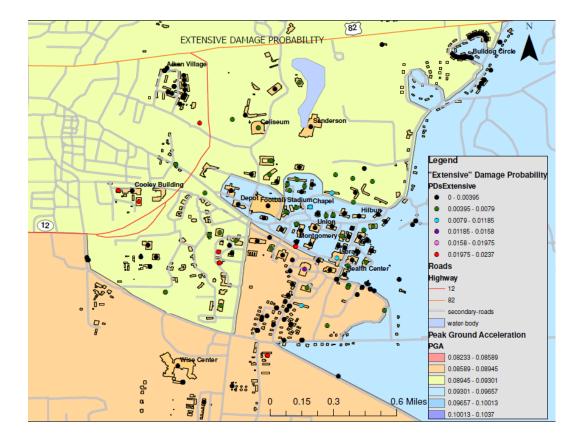
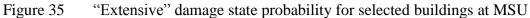




Figure 34 "Moderate" damage state probability for selected buildings at MSU

Note: Most of the MSU buildings have a low probability of experiencing a moderate damage due to an earthquake,

Note: Most buildings have a 0-0.00395 probability of having an extensive damage. The highest probability of building having an extensive damage is 0.0237. Only very few buildings have probabilities between 0.01975 -0.0237 to have an extensive damage.

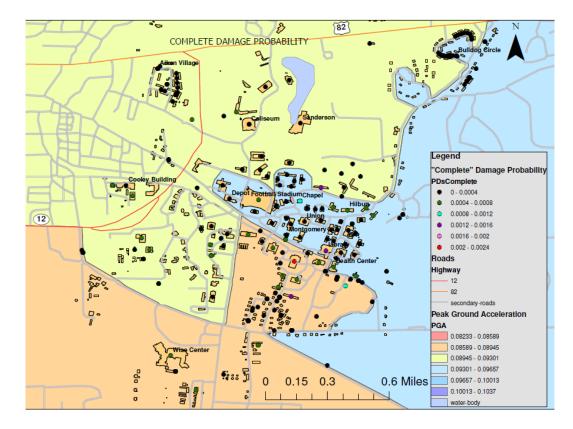


Figure 36 "Complete" damage state probability for selected buildings at MSU

Note: The highest probability of building having a complete damage is 0.0024 and most of the buildings have a very low probability (0.0004-0.0008) of being completely damage

The summary report for direct economic loss (Figure 37) indicates 0.67% loss ratio for the study. According to the summary reports the dollar amount relating to 0.67% is 8,185,898.

		Capital St	ock Losses				Income	Losses]
	Cost Structural Damage	Cost Non-struct. Damage	Cost Contents Damage	Inventory Loss	Loss Ratio %	Relocation Loss	Capital Related Loss	Wages Losses	Rental Income Loss	Total Loss
Mississippi Oktibbeha Total	475,219 475,219	2,729,578 2,729,578	1,256,970 1,256,970	0	0.67	2,627,482 2,627,482	242,162	565,044 565,044	289,444 289,444	8,185,898 8,185,898
Region Total	475,219	2,729,578	1,256,970	0	0.67	2,627,482	242,162	565,044	289,444	8,185,898

Figure 37 Summary report for the direct economic losses – User supplied data

Earthquake scenario at 34.0N, 88.76W; Hypothetical epicenter to produce ~0.2g peak ground acceleration at MSU

The peak ground acceleration in the area where Mississippi State University is located falls in the range of 0.20g for an intra-plate New Madrid seismic event (Snodgrass, 1998). Therefore a hypothetical earthquake was defined at 34.0N, 88.76W with soil type D and CEUS attenuation function to generate approximately 0.2g peak ground acceleration at MSU. Peak ground acceleration of census tracts in which MSU buildings are located at ranges between 0.198 – 0.235g (Figure 38). According to the results of this study if an earthquake produce ~0.2g peak ground acceleration at the University, probability of occurrence of damage to the buildings increase (Appendix C). From such an event MSU will have 4.28% direct economic losses from buildings. The dollar amount relating to 4.28% is \$53,069,902.

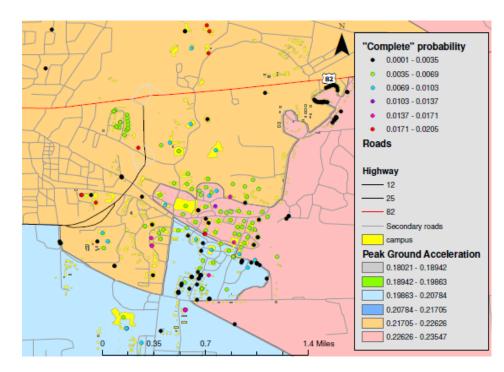


Figure 38 Peak ground acceleration values and complete damage probabilities for buildings at 0.2g

Applications of Risk Assessment

Some of the earlier earthquake risk assessment and loss estimation processes were conducted in early 1970's to improve the disaster relief and recovery process. But recent studies have been conducted with a wide range of purposes. Different professions have different advantages in conducting a risk assessment. For example fire fighters may be interested in areas where large fires can be expected where as municipalities can use the study for planning and construction purposes.

Earthquake Risk Assessment of Mississippi State University helps to understand the seismic hazard, and risk to MSU buildings.

Uncertainties of Risk Assessments

Uncertainties are common in risk assessment and loss estimation processes. They can occur due to incomplete knowledge about earthquakes and their effects upon different building structures, and by approximations and simplifications made by analysts. Uncertainties are also results from incomplete and inaccurate inventories.

CHAPTER V

CONCLUSION

Considering the facts about New Madrid Seismic Zone there is a possibility of an earthquake with considerable magnitude occurring in the life time of existing Mississippi State University buildings. Scenario earthquakes defined at well known locations (Marked Tree, Arkansas) within the seismic zone using HAZUS model does not indicate any ground motion at the Oktibbeha County, however earlier studies (Snodgrss,1998) indicate ten percent damage to the Mississippi State University.

According to Hough and Martin (2002) the epicenter for one of the largest aftershocks of 1811-1812 was located within the State of Mississippi possibly around 34.6N, 89.2W. Therefore not only major earthquakes but also aftershocks from major events in the New Madrid Seismic Zone should be considered in the seismic risk assessment of Mississippi State University. Scenario earthquakes defined at 34.6N, 89.2W indicated that the loss ratio will be 0.67% for a magnitude 7.00 earthquake. According to the summary reports from HAZUS the dollar amount relating to 0.67% is 8,185,898. Analysis of percentages of different damage probabilities for different buildings indicate that about 85.96% of the buildings will have a "none" damage state probability and 0.02% of the buildings will have a "complete" damage state probability. Most of the buildings constructed with wood and reinforced masonry show a significant high probability to be not damaged by an earthquake. Concrete and unreinforced

masonry buildings show a significant high probability for being damaged by an earthquake.

A hypothetical earthquake defined to generate 0.2g peak ground acceleration at MSU results in loss ratio of 4.28% for buildings and relating to total economic loss of \$53,069,902.

From these results it can concluded that Mississippi State University has the probability of significant damage by an earthquake.

REFERENCES

- Anderson, H. M. 1937. Missouri, 1804–1828: peopling a frontier state, *Mo. Hist. Rev.* 31, p.150–180
- Bodin, P., and J. Gomberg. 1994. Triggered Seismicity and Deformation between the Landers, California, and Little Skull Mountain, Nevada, Earthquakes. *Bulletin of the Seismological Society of America*. 84 (3): p. 835.
- Bograd, M.B.E., 1997. Earthquake Hazard Mapping in the Central United States by the State Geological Surveys. Journal of the Mississippi Academy of Sciences, Vol42, No. 1, January. P.43
- Bradbury, J. 1819. Travels in the Interior of America in the Years 1809, 1810, and 1811
- Braile, L. W., W. J. Hinze, and G. R. Keller. 1997. New Madrid Seismicity, Gravity Anomalies, and Interpreted Ancient Rift Structures. SEISMOLOGICAL RESEARCH LETTERS. 68 (4): p.599-610.
- Braile, L. W., W. J. Hinze, G. R. Keller, E. G. Lidiak, and J. L. Sexton. 1986. Tectonic Development of the New Madrid rift complex, Mississippi embayment, North America, Tectonophysics, 131, p.1-21
- Building Seismic Safety Council. 1997. Seismic considerations for communities at risk. Earthquake Hazards Reduction Series. Washington, D.C.: Building Seismic Safety Council.
- Cox, R. T., and R B Van Arsdale. 1997. Hotspot origin of the Mississippi embayment and its possible impact on contemporary seismicity. *Engineering Geology*. 46 (3-4): p.201.
- Cramer, Chris H. 2002. A seismic hazard uncertainty analysis for the New Madrid seismic zone. *Engineering Geology*. 62 (1): 251.
- Cushing, E.M., Boswell, E.H. and Hosman, R.L., 1964. General Geology of the Mississippi Embayment. USGS Prof. Paper 448-B

- Dockery, D.T. 2008. Mesozoic Stratigraphic Units in Mississippi, Mississippi Office of Geology, After MISSISSIPPI GEOLOGY, V. 17, No. 1, March 1996, pp. 1-8
- Elnashai, A. S., Theresa Jefferson, Frank Fiedrich, Lisa Johanna Cleveland, and Timothy Gress, 2008. *Impact of earthquakes on the central USA*. Urbana, Ill: Mid-America Earthquake Center, University of Illinois,p.1
- Frankel, A.D., Applegate, D., Tuttle, M.P., and Williams, R.A., 2009. Earthquake hazard in the New Madrid Seismic Zone remains a concern: U.S. Geological Survey Fact Sheet 2009–3071, p. 2
- Federal Emergency Management Agency, 2003. Multi-hazard Loss Estimation Methodology, Earthquake Model, HAZUS MH MR3Technical Manual, Washington, DC
- Federal Emergency Management Agency, 2003. Multi-hazard Loss Estimation Methodology, Earthquake Model, HAZUS MH MR3User Manual, Washington, DC
- Federal Emergency Management Agency, Central US Earthquake Consortium, Risk Management Solutions, Inc., Michael Baker Corporation, 2009, Application of HAZUS to the New Madrid Earthquake
- Garret W.E., ed. 1988. Historical atlas of the United States.Washington DC: Natl.Geogr.Soc.
- Geological Survey (U.S.). 2007. *Earthquake hazard in the heart of the homeland*. Memphis, TN: U.S. Geological Survey.
- Hake, Carl, A. Von, 1974. Earthquake Information Bulletin, Volume 6, Number 1, March-April 1974
- Hildenbrand, T. G., A. Griscom, W. R. Van Schmus, and W. D. Stuart. 1996.
 "Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone". *Journal of Geophysical Research*. 101 (B/10): 21,921.
- Hildenbrand, T.G., Kane, M.F. and Hendricks, J.D., 1982. Magnetic basement in the upper Mississippi Embayment region A preliminary report. USGS Professional Paper 1236, p. 39-53.
- Hough, Susan E., and Stacey Martin. 2002. Magnitude Estimates of Two Large Aftershocks of the 16 December 1811 New Madrid Earthquake. Bulletin of the Seismological Society of America. 92 (8): p.3259-3268.

- Hough, S.E., J.G. Armbruster, L. Seeber, and J.F. Hough. 2000. On the modified Mercalli intensities and magnitudes of the 1811-1812 New Madrid earthquakes, Journal of Geophysical Research, 23,839-23,864.
- Hough, S. E. 2001. Triggered earthquakes and the 1811–1812 New Madrid, central U.S. earthquake sequence, *Bull. Seism. Soc. Am.* 91, p. 1574–1581
- Hopper, M.G., 1985. Estimation of Earthquake Effects Associated With Large Earthquakes in the New Madrid Seismic Zone. U.S. Geological Survey Open File Report 85-457, United States Government Printing Office, Washington
- Hwang, H.M., Asce, M., Min Xu, Jun-Rong Huo, 1995. CERI Seismic Vulnerability and Repair Cost of the University of Memphis Buildings
- Johnston, Arch C., and Eugene S. Schweig. 1996. THE ENIGMA OF THE NEW MADRID EARTHQUAKES OF 1811-1812. *Annual Review of Earth and Planetary Sciences*. 24: p.339 - 384.
- Johnston, Arch C., and Lisa R. Kanter. 1990. Earthquakes in stable continental crust. *Scientific American*. V.262, P.68-75.
- Johnson, P.R., Zietz, I. and Thomas, W.A., 1994. Possible Neoproterozoic- early Paleozoic grabens in Mississippi, Alabama and Tennessee.Geology
- Kidwell, A.L., 1951. Mesozoic igneous activity in the northern Gulf Coastal Plain. Gulf Coast Association of Geological Societies Transactions, 1st Annual Meeting, p. 182-199
- Kochkin Vladimir G. and Crandell Jay H. 2003. United States, and NAHB Research Center.. New Madrid Seismic Zone: overview of earthquake hazard and magnitude assessment based on fragility of historic structures. Upper Marlboro, MD: NAHB Research Center.p.1-42
- Meltzner, A. J., and D. J. Wald. 2001. Aftershocks and triggered events of the great 1906 San Francisco earthquake, based on intensity observations(abstract), *Seism. Res. Lett.* 72, p. 227.
- Missouri Department of Natural Resources, Division of Geology and Land Survey, Earthquake Facts about the New Madrid Seismic Zone, <u>www.dnr.mo.gov</u>
- Morris, E, M., 1987. The Cretaceous Arkansas alkalic province; a summary of petrology and geochemistry: In Morris, E.M. and Pasteris, J.D. (Editors), Mantle Metasomatism and Alkaline Magmatism. GSA Special Paper 215: p.217-233

- Murty, C. V. R. 2005. *Earthquake tips: learning earthquake design and construction*. Kanpur, India: National Information Center of Earthquake Engineering, Indian Institute of Technology Kanpur.
- National Earthquake Hazards Reduction Program (U.S.). 2005. Rapid visual screening of buildings for potential seismic hazards. [Washington, D.C.]: U.S. Dept. of Homeland Security, FEMA 154.
- National Institute of Building Sciences (Washington, D.C.), and United States. 2008. HAZUS MH estimated annualized earthquake losses for the United States. FEMA, 366/ April 2008. Washington, D.C.: FEMA.
- Newman, A, S Stein, J Weber, J Engeln, A Mao, and T Dixon. 1999. Slow Deformation and Lower Seismic Hazard at the New Madrid Seismic Zone. *Science*. 284 (5414): 619.
- Nuttli, Otto W., and David Stewart. 1990. *The effects of earthquakes in the Central United States*. Cape Girardeau, MO: Center for Earthquake Studies, Southeast Missouri State University.
- Nuttli, O. W., The Mississippi valley earthquakes of 1811 and 1812, intensities, ground motion, and magnitudes. 1973. Bulletin of the Seismological Society of America, **63**, p. 227 248
- Olshansky, R. B. 1993. Selling Seismic Building Codes in the Central United States.
- Olshansky, R.B., 1994. Seismic Hazard Mitigation in the Central United States: The role of the States. U.S. Geological Survey Professional Paper 1538-G, United States Government Printing Office, Washington,p G1-G12
- Reiter, L. 1990. *Earthquake hazard analysis: issues and insights*. New York: Columbia University Press.
- Russell, E.E., Keady, D.M., Mancini, E.A., and Smith, C.C., 1983. Upper Cretaceous Lithostratigraphy and Biostratigraphy in Northeast Mississippi, Southwest Tennessee and Northwest Alabama, Shelf Chalks and Coastal Clastics. Field Trip April 7-9, 1983: Geological survey of Alabama, 72p
- Rutherford and Chekene, National Institute of Standards and Technology (U.S.), National Earthquake Hazards Reduction Program (U.S.), and United States. 2006. *Techniques for the seismic rehabilitation of existing buildings*. [Washington, DC]: FEMA

Schweig, 2007. Earthquake possibility: New Madrid Zone 7.7 magnitude FEMA Report,

- Smalley R Jr, MA Ellis, J Paul, and Van Arsdale RB. 2005. Space geodetic evidence for rapid strain rates in the New Madrid seismic zone of central USA. *Nature*. 435 (7045): 1088-90.
- Stewart, David. 1994. Damages & losses from future New Madrid earthquakes: a Central U.S. Earthquake Intensity Scale for pre-earthquake planning "CUSEIS" Southeast Missouri State University. Center for Earthquake Studies.p.22
- Stover, C.W. and Coffman, J.L., 1992. Seismicity of the United States, 1568-1989.U.S. Geological Survey Professional Paper 1527. United States Printing Office , Washington, P. 66- 67
- Street, R. W. 1984. The Historical Seismicity of the Central United States: 1811–1928, Final Report, Contract 14-08-0001-21251, U.S. Geological Survey, Washington, D.C., Appendix A, p.316
- Snodgrass, David Harold. 1998. *Earthquake site analysis of Mississippi State University*. Thesis (M.S.)--Mississippi State University.Department of Geosciences.p.1-103
- Todd, Diana, and Ann Bieniawski. 1992. Guidelines and procedures for implementation of the executive order on seismic safety of new building construction. NISTIR, 4852. Gaithersburg, MD: Building and Fire Research Laboratory, National Institute of Standards and Technology.
- Tuttle, M. P., and E. S. Schweig. 1995. Archeological and pedological evidence for large prehistoric earthquakes in the New Madrid seismic zone, central United States. *GEOLOGY -BOULDER-*. 23 (3): 253.
- Zoback, M. D., R. M. Hamilton, A. J. Crone, D. P. Russ, F. A. McKeown, and S. R. Brockman. 1980. Recurrent intraplate tectonism in the New Madrid seismic zone, Science, 209, 971-976

APPENDIX A

MISSISSIPPI STATE UNIVERSITY BUILDING DATA USED FOR USER SUPPLED

DATA ANALYSIS

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
D	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002000	Industrial Education	1900	1044400.00	2	41300	Masonry, Wood
MS002001	George Hall	1902	478476.00	ю	11556	Masonry, Wood
MS002002	Montgomery Hall	1903	6128656.68	5	37270	Masonry, Wood, Concrete
MS002003	McCain Engineering	1905	8128591.39	3	71545	Masonry, Concrete
MS002004	Middleton Hall	1905	84483.00	3	12418	Masonry,Wood
MS002005	Materials Testing Lab	1906	9069.00	2	3720	Masonry
MS002006	Lee Hall	1909	7028355.29	5	74830	Masonry,Wood
MS002007	Carpenter Engineering	1910	863260.16	4	43538	Masonry
MS002008	YMCA & Post Office	1914	353547.00	4	31435	Masonry
MS002009	Perry Cafeteria	1921	5214869.46	2	58696	Wood, Masonry
MS002010	Harned Hall	1921	2627593.22	5	54502	Masonry, Concrete
MS002011	Steam Plant	1921	443367.00	2	21026	Concrete, Masonry
MS002012	Herbert Hall	1928	1130905.00	3	36480	Concrete, Masonry
MS002013	Stennis Institute	1928	149184.00	1	3805	Masonry,Wood
MS002014	Giles Hall	1929	4273311.92	1	82113	Masonry, Concrete
MS002015	Bowen Hall	1929	4314253.26	3	33775	Concrete, Masonry
MS002016	Lloyd-Ricks Building	1929	914258.18	4	67323	Masonry, Concrete
MS002017	Flower Shop & Student Media Ctr	1937	713631.60	1	12271	Masonry,Concrete
MS002018	Hull Hall	1938	1314690.00	3	65682	Masonry, concrete
MS002019	Magruder Hall	1938	530611.47	3	23600	Masonry, concrete
MEDICOLOUN	Rand Hall	1939	58905 00		7277	Maconer Concerto

Mississippi State University building data used for the study (Source: 2009 Annual Capital facility study) Table 12

المنسارات

led)
ntinu
(Co
12
Table

المنسارات المستشارات

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
IJ	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002021	Bedenbaugh Animal Laboratory	1939	183756.00	2	6120	Concrete, Masonry
MS002022	Faculty Housing	1939	51747.77	2	3536	Wood
MS002023	Box Building (formerly 35 Morrill Rd)	1939	150562.00	7	3536	Wood, Masonry
MS002024	Student Housing	1939	59500.00	2	5115	Masonry, Wood
MS002025	Art Gallery	1939	59500.00	2	5115	Masonry, Wood
MS002026	Art Gallery	1939	59500.00	2	5115	Masonry, Wood
MS002027	Roberts Building	1946	936869.52	1	21528	Masonry
MS002028	Briscoe Hall	1947	336104.00	2	13008	Masonry, Steel
MS002029	Freeman Hall	1947	204528.00	2	13008	Masonry, Steel
MS002030	Moore Hall	1947	272472.00	2	13008	Masonry
MS002031	Hill Poultry Science	1947	417827.00	2	22618	Masonry, Concrete
MS002032	Stafford Hall	1947	357154.49	2	13008	Steel, Masonry
MS002033	Plant Pathology Greenhouse	1948	86500.00	1	2112	Wood, Glass
MS002034	Davis-Wade Football Stadium	1938	35308310.28	7	186099	Concrete, Masonry
MS002035	Howell Agricultural Engineering	1950	433366.00	2	43847	Brick
MS002036	McCarthy Gym	1950	1152967.11	2	55697	Concrete
MS002037	Mitchell Memorial Library	1950	17491161.18	7	235657	Concrete, Brick,concrete
MS002038	Patterson Engineering	1950	1158456.84	2	52839	Concrete, Brick
MS002039	Newell-Grissom Building	1953	1894245.42	1	45580	Masonry
MS002040	Sewage Treatment Plant	1954	37865.00	1	594	Masonry

الد مقالي	Table	1	;			
	Table 12 (Continued)	ID	MS002041	MS002042	MS002043	MEDDOM
	(pa)		But	Pet	Eth	Č

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
Ð	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002041	Butler-Williams Building	1954	358342.00	2	17763	Steel
MS002042	Petroleum Products Lab	1955	97500.00	2	9533	Concrete
MS002043	Etheredge Chemical Engineering	1957	559803.32	3	40548	Concrete, Masonry
MS002044	Critz Hall	1958	3401314.39	3	42714	Concrete
MS002045	Garner Hall	1950	2686777.33	2	41433	Masonry, concrete
MS002046	Music Building "A"	1965	25900.00	1	2474	Steel
MS002047	Music Building "B"	1958	55690.00	1	3088	Masonry
MS002048	Butler Hall	1959	2602194.80	3	36971	Concrete
MS002049	McKee Hall	1959	3505362.73	4	47434	Concrete
MS002050	Memorial Hall	1959	881558.01	3	25298	Concrete
MS002051	Sessums Hall	1959	3937059.27	4	47434	Concrete
MS002052	Turman Field House	1959	295674.80	2	10971	Concrete
MS002053	Hilbun Hall	1960	7209831.91	4	76534	Concrete
MS002054	Walker Engineering	1963	900665.53	3	45948	Concrete
MS002055	Cresswell Hall	1964	5043724.65	5	58324	Concrete
MS002056	Raspet Flight Research Lab	1964	557167.25	2	38417	Steel
MS002057	Ballew	1965	475749.00	2	21984	Concrete
MS002058	Hand Chemical Lab	1964	18619590.69	5	92801	Concrete
MS002059	Colvard Student Union	1965	2996127.31	3	93640	Concrete
MS002060	Aiken Village 20	1965	97382.00	2	4420	Concrete
MS002061	Aiken Village 21	1965	167095.00	2	12884	Concrete
MS002062	Aiken Village 22	1965	167255.00	2	13404	Concrete
MS002063	Aiken Village 23	1965	177989.00	2	13404	Concrete

	Table 12 (Continued)	D	MS002064 Aike	MS002065 Aike	MS002066 Aike	MS002067 Aike
للاستشارات	Table		i			

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
D	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002064	Aiken Village 24	1965	167255.00	2	13404	Concrete
MS002065	Aiken Village 25	1965	167255.00	2	13404	Concrete
MS002066	Aiken Village 26	1965	167255.00	2	13404	Concrete
MS002067	Aiken Village 27	1965	167255.00	2	13404	Concrete
MS002068	Aiken Village 28	1965	167255.00	2	13404	Concrete
MS002069	Aiken Village 30	1965	167255.00	2	13404	Concrete
MS002070	Aiken Village 31	1965	167095.00	2	12884	Concrete
MS002071	Aiken Village 32	1965	177989.00	2	13404	Concrete
MS002072	Aiken Village 33	1965	177989.00	2	13404	Concrete
MS002073	Aiken Village 34	1965	167095.00	2	12884	Concrete
MS002074	Aiken Village 35	1965	177989.00	2	13404	Concrete
MS002075	Aiken Village 36	1965	167255.00	2	13404	Concrete
MS002076	Aiken Village 37	1965	167255.00	2	13404	Concrete
MS002077	Longest Student Health Center	1965	5507724.03	2	50952	Concrete,steel,brick, masonry
MS002078	Chapel of Memories	1967	644987.43	1	5310	Masonry
MS002079	Evans Hall	1965	1200980.50	4	52712	Concrete
MS002080	Dorman Hall	1966	2504935.10	4	141584	Concrete
MS002081	Polk-Dement Baseball Stadium	1987	6673748.45	2	30002	Concrete, steel)
MS002082	Edwards Reactor Lab	1967	56978.00	1	3128	Steel
MS002083	Hathorn Hall	1967	6722299.97	5	72974	Concrete
MS002084	Music Building	1968	48725.00	1	3387	Masonry
MS002085	President's Home	1969	187344.97	3	8683	Masonry,wood

اللاب من إ. إ. م.	Table		i			
	Table 12 (Continued)	ID	MS002086	MS002087	MS002088	MS007080
	(pa)		Rec	Ric	Coc	Sut Sut

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
IJ	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002086	Receiving Station	1966	45173.20	1	5438	Masonry
MS002087	Rice Hall	1968	1907921.00	8	110488	Concrete
MS002088	Cooley Building	1966	467016.00	2	107558	Wood,Masonry
MS002089	Suttle Hall	1969	1951887.00	6	142598	Concrete
MS002090	McArthur Hall	1971	4301122.18	6	64516	Concrete
MS002091	GeoScience Storage Bldg	1969	34569.00	1	6078	Steel
MS002092	Physical Plant Buckner Storage	1969	34569.00	1	5109	Steel
MS002093	Scales Veterinary Science	1970	581992.00	1	15723	Concrete
MS002094	Clay Lyle Entomology Center	1971	1173383.16	2	44411	Concrete
MS002095	Clay Lyle Greenhouse Lab	1972	19839.00	1	3948	Wood
MS002096	Herzer Dairy Science	1937	1809015.39	2	62489	Masonry, Concrete, Steel
MS002097	Gast Rearing Lab	1971	602656.00	2	23474	Concrete
MS002098	Allen Hall	1972	4025606.03	7	151083	Concrete, steel
MS002099	Cobb Institute Of Archaeology	1975	799983.00	2	21754	Concrete
MS002100	Humphrey Coliseum	1975	8780819.37	5	173797	Masonry
MS002101	McCool Hall	1974	19178009.19	4	144587	Masonry, Concrete
MS002102	Noble Pace Seed Technology	1974	495186.00	1	26443	Masonry
MS002103	Simrall Electrical Engineering	1976	3817261.00	4	94477	Masonry
MS002104	Bost	1977	4435494.00	5	109957	Concrete
MS002105	Sewage Lab	1975	13024.00	1	592	Wood, Brick
MS002106	Shira Field House	1978	8203951.69	2	65288	Steel
MS002107	CVM Large Animal Clinic	1979	1517183.00	1	6700	Steel

للاستشارات							
	Table 12 (Continued)	(pər					
i	A	NAME	YEAR BUILT	CONSTRUCTION COST IN US\$	NO. OF FLOORS	AREA SQ. FT	TYPE OF CONSTRUCTION
	MS002108	Solvent Storage	1978	24988.00	1	1239	Steel
	MS002109	Wise Center	1981	32091202.94	4	376000	Concrete
	MS002110	Arbour Acres 1	1982	497733.09	2	7600	Steel
	MS002111	Arbour Acres 2	1982	497733.09	2	7600	Steel, Masonry
	MS002112	Arbour Acres 3	1982	497733.09	2	7600	Steel, Masonry
	MS002113	Arbour Acres 4	1982	363022.09	2	4776	Steel, Masonry
	MS002114	Arbour Acres 5	1982	497733.10	2	7600	Steel, Masonry
	MS002115	Arbour Acres 6	1982	497733.10	2	7600	Steel, Masonry
	MS002116	Arbour Acres 7	1982	363022.10	2	4776	Steel, Masonry
79	MS002117	Transportation Shop	1982	12350.00	1	1800	Steel, Masonry
	MS002118	Facilities Use /Support Services	1928	52648.08	1	1841	Wood
	MS002119	Campus Landscape Office	1983	69471.00	1	1500	Metal
	MS002120	Campus Landscape Shop	1983	138942.23	1	3000	Metal
	MS002121	Academic Advising Center	1890	8312.00	2	3876	Wood
	MS002122	McComas Hall	1986	5570495.07	4	63941	Steel, Concrete
	MS002123	Physical Plant Shop/Storage Building	1988	232640.00	2	18270	Steel
	MS002124	Cobb Institute Curation Facility	1987	285128.00	1	7000	Steel
	MS002125	Butler Guest House	1988	730419.00	2	6668	Brick
w	MS002126	Comparative Biomedical Res Facility	1988	558012.00	1	8645	Steel
ww	MS002127	PGM Academic Facility	1991	146189.55	1	4602	Steel
v.ma	MS002128	Seal "M" Club Building	1990	1428962.00	2	12537	Steel
ana	MS002129	Raspet Flight Research Lab Annex	1991	3881256.78	2	62031	Steel

led)
ntinu
Co
12
Table

المنسلون الاستشارات

		YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
Ð	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
MS002130 F	High Performance Computing Center	1990	4412172.94	3	40776	Concrete
MS002131 N	Meridian Admin & Classroom Bldg	1993	5755823.34		63840	Concrete, Masonry
	Ammerman-Hearnsburger Food	1005	011005 72	ŀ	0022	Loto M
_	r10cessing	C 66 1	C/.000+16	T	00//	INICIAL
MS002133 F	Bryan Athletic Administration Bldg	1995	5415543.00	2	31044	Masonry
MS002134 F	RCU Building	1996	819316.67	1	8261	Steel, Masonry
MS002135 C	Center For Writing & Thinking	1997	94000.00	1	4674	Steel
MS002136 F	Plant & Soil Sciences Greenhouses	1998	2000282.09	1	17894	Masonry
MS002137 C	Child Development & Family Studies Ctr	1997	935363.00	ļ	10089	Steel. Masonry
	ICET	1998	8627606.01	2	59757	Steel, Masonry
MS002139 S	Sanderson Recreation Center	1998	19175574.52	2	156827	Steel, Masonry
MS002140 N	Mississippi Horse Park/AgriCenter	1999	5344929.45	1	69182	Steel, Masonry
MS002141 5	509 East Capitol Street	1998	3010925.71	4	25971	Masonry
MS002142 S	Swalm Chemical Engineering Bldg	2000	16179400.33	6	100638	Masonry
MS002143 I	Landscape Architecture Seminar/Studio	2003	2378418.41	2	13333	Steel
MS002144 I	Landscape Architecture Freehand Studio	2003	379069.91	1	2125	Steel
MS002145 I	Landscape Architecture Administration	2003	955256.17	1	5355	Steel
MS002146	Grand Opera House	1890	250000.00	3	40000	Wood
MS002147	Marks-Rothenberg Building	1889	250000.00	3	63640	Wood
MS002148 C	CAVS - Thad Cochran Research Park	2003	8295420.00	2	56055	Masonry
MS002149 C	CAVS - Canton Facility	2004	4335904.00	2	24048	Masonry
MS002150 F	Power Generation Plant	2005	14846204.97	2	7668	Steel
MS002151	Newberry Building	1890	135000.00	4	10466	Masonry

للاستشارات								
j	Table	Table 12 (Continued)	led)					
				YEAR	CONSTRUCTION	NO. OF	AREA	TYPE OF
		D	NAME	BUILT	COST IN US\$	FLOORS	SQ. FT	CONSTRUCTION
1		MS002152	Poultry Diagnostic Lab	2003	476848.17		2160	Steel
2		MS002153	Ruby Hall	2005	20179342.91	3	157261	Masonry
		MS002154	Cullis Wade Depot	2006	8820671.34	2	46084	Steel
		MS002155	Palmeiro Center	2006	6397171.89	1	82005	Masonry
		MS002156	Griffis Hall	2006	16377183.72	4	114509	Masonry
		MS002157	Hurst Hall	2006	11713514.81	3	81864	Masonry
		MS002158	Baseball Coaches Offices	2006	957782.00	1	4500	Masonry
		MS002159	Building #3 - Northeast Village	2007	11713514.81	3	81864	Masonry
		MS002160	Band and Choral Rehearsal Hall	2007	3739920.08	2	17980	Masonry
	8	MS002161	Soccer Press Box	2008	673650.00	2	2948	Masonry
	81	MS002162	Aerospace Engineering Motor Test	1950	3000.00	1	456	Brick
		MS002163	Ag Engineering Processing Lab	1972	45000.00	1	4820	Metal
		MS002164	Int'l Security & Strategic Studies	1939	39237.65	2	3536	Wood
		MS002165	CVM Poultry House	1977	20000.00	1	1537	Steel
		MS002166	Campus Landscape Storage	1964	6000.00	1	8000	Wood
		MS002167	Bulldog 11-12	1960	27088.00	1	3074	Wood
		MS002168	Bulldog 13-14	1960	27088.00	1	3074	Wood
		MS002169	Bulldog 15-16	1960	27088.00	1	3074	Wood
		MS002170	Bulldog 17-18	1960	27088.00	1	3074	Wood
w		MS002171	Bulldog 19-20	1960	27088.00	1	3074	Wood
VW.		MS002172	Bulldog 21-22	1960	27088.00	1	3074	Wood
.ma		MS002173	Bulldog 23-24	1960	27088.00	-	3074	Wood

MS002181Buildog 3740 1960 27088.00 1 3074 WoodMS002182Buildog 41.42 1960 27088.00 1 3074 WoodMS002183Buildog 47.48 1960 27088.00 1 3074 WoodMS002184Buildog 47.48 1960 27088.00 1 3074 WoodMS002185Buildog 49.50 1960 27088.00 1 3074 WoodMS002186Buildog 49.50 1960 27088.00 1 3074 WoodMS002187Buildog 49.50 1950 27088.00 1 3074 WoodMS002187Buildog 45.52 1960 27088.00 1 3074 WoodMS002188Morgan 45 1950 27088.00 1 3074 WoodMS002189Center For America's Veterans 1896 46528.47 1 3074 WoodMS002190Transportation 1937 8835.00 1 3074 WoodMS002191Stemis Institute 1937 8835.00 1 2018 WoodMS002192History 1916 7344.00 1 2066 WoodMS002193History 1916 7344.00 1 2065 WoodMS002194Arbour Acres Laundry 1937 7344.00 1 1715 WoodMS002195Magruder 58 1919 8128.00 1 1715 WoodMS002194MoonMoon 1919 8128.00 1 1715 Wo	Table 12 (Continued) m m MS002174 Bi MS002175 Bi MS002177 Bi MS002179 Bi MS002170 Bi MS002170	ued) Bulldog 25-26 Bulldog 27-28 Bulldog 27-28 Bulldog 29-30 Bulldog 31-32 Bulldog 33-34 Bulldog 37-38 Bulldog 37-38	YEAR BUILT BUILT 1960 1960 1960 1960 1960	CONSTRUCTION CONSTRUCTION COST IN US\$ 27088.00 27088.00 27088.00 27088.00 27088.00 27088.00	NO. OF FLOORS 1 1 1 1 1 1 1 1 1 1 1	AREA SQ.FT 3074 3074 3074 3074 3074 3074 3074	TYPE OF TYPE OF CONSTRUCTION Wood Wood Wood Wood Wood
Buildog 43-44 1960 27088.00 1 3074 Buildog 45-46 1960 27088.00 1 3074 Buildog 47-48 1960 27088.00 1 3074 Buildog 51-52 1960 27088.00 1 3074 Buildog 51-52 1935 8700.00 1 3074 Morgan 45 1935 8700.00 1 3074 Morgan 45 1937 8835.00 1 1904 Transportation 1937 8835.00 1 2018 Stennis Institute 1937 7344.00 1 2065 History 1916 7344.00 1 2065 History 1916 7344.00 1 1715 Arbour Acres Laundry 1905 25560.00 1	MS002182		1960	27088.00	1 1	3074	Wood
Bulldog 45-46 1960 27088.00 1 3074 Bulldog 47-48 1960 27088.00 1 3074 Bulldog 49-50 1960 27088.00 1 3074 Bulldog 49-50 1960 27088.00 1 3074 Bulldog 51-52 1960 27088.00 1 3074 Morgan 45 1960 27088.00 1 3074 Morgan 45 1960 27088.00 1 3074 Transportation 1935 8700.00 1 1904 Kennis Institute 1937 8835.00 1 2018 Kennis Institute 1935 13178.00 2 3060 History 1916 7344.00 1 2065 Arbour Acres Laundry 1937 7300.00 1 1715 Arbour Acres Laundry 1905 1 23060.00 1 1715	MS002183		1960	27088.00	1	3074	Wood
Bulldog 47-48 1960 27088.00 1 3074 Bulldog 49-50 1960 27088.00 1 3074 Bulldog 51-52 1960 27088.00 1 3074 Bulldog 51-52 1950 27088.00 1 3074 Morgan 45 1950 27088.00 1 3074 Image 51-52 1950 27088.00 1 3074 Morgan 45 1950 1935 8700.00 1 1904 Image 7 1898 1898 46528.47 1 3272 Image 7 1898 1898 13178.00 1 2018 Stennis Institute 1935 13178.00 2 3060 1 History 1916 7344.00 1 2065 1 Ambour Acres Laundry 1937 13178.00 1 1715 1 Ambour Acres Laundry 1937 1937 1 2060 1 1602 Ambour Acres Laundry 1905 25960.00	MS002184		1960	27088.00	1	3074	Wood
Bulldog 49-50 1960 27088.00 1 3074 Bulldog 51-52 1960 27088.00 1 3074 Morgan 45 1960 27088.00 1 3074 Morgan 45 1950 8700.00 1 1904 Transportation 1935 8835.00 1 3272 Transportation 1937 8835.00 1 3272 Stennis Institute 1937 8835.00 1 2018 History 1937 13178.00 2 3060 History 1935 7344.00 1 2055 Arbour Acres Laundry 1916 7344.00 1 2065 Arbour Acres Laundry 1905 25960.00 1 1715 1 Magruder 58 1919 8128.00 1 2408 1 1602 1	MS002185		1960	27088.00	1	3074	Wood
Bulldog 51-52 1960 27088.00 1 3074 Morgan 45 1935 8700.00 1 1904 Korgan 45 1935 8700.00 1 1904 Center For America's Veterans 1898 46528.47 1 3272 Transportation 1937 8835.00 1 3272 Kennis Institute 1937 13178.00 2 3060 History 1935 13178.00 2 3060 History 1916 7344.00 1 2065 Arbour Acres Laundry 1937 7300.00 1 1715 Arbour Acres Laundry 1905 25960.00 1 1602 Magruder 58 1919 8128.00 1 2408	MS002186		1960	27088.00	1	3074	Wood
Morgan 45 1935 8700.00 1 1904 Center For America's Veterans 1898 46528.47 1 3272 Transportation 1937 8835.00 1 3272 Transportation 1937 8835.00 1 3272 Stennis Institute 1935 13178.00 2 3060 History 1916 7344.00 1 2065 Arbour Acres Laundry 1937 1937 17300.00 1 1715 1 Arbour Acres Laundry 1905 25960.00 1 1602 1 1602 1 Magruder 58 1919 8128.00 1 2408 1 2408	MS002187	Bulldog 51-52	1960	27088.00	1	3074	Wood
Center For America's Veterans189846528.4713272Transportation19378835.0012018Stennis Institute193513178.0023060History19167344.0012065Comprehensive Testing Center19377300.0011715Arbour Acres Laundry190525960.0011602Magruder 5819198128.0012408	MS002188		1935	8700.00	1	1904	Wood
Transportation 1937 8835.00 1 2018 Stennis Institute 1935 1935 13178.00 2 3060 History 1916 7344.00 1 2065 1715 1715 Comprehensive Testing Center 1937 1937 7300.00 1 1715 1715 Arbour Acres Laundry 1905 25960.00 1 1602 1602 1602 Magruder 58 1919 8128.00 1 2408 1602<	MS002189		1898	46528.47	1	3272	Wood
Stennis Institute 1935 13178.00 2 3060 History 1916 7344.00 1 2065 Comprehensive Testing Center 1937 7300.00 1 2065 Arbour Acres Laundry 1905 25960.00 1 1602 Magruder 58 1919 8128.00 1 2408	MS002190		1937	8835.00	1	2018	Wood
History 1916 7344.00 1 2065 Comprehensive Testing Center 1937 7300.00 1 1715 7 Arbour Acres Laundry 1905 25960.00 1 1602 7 7602 Magruder 58 1919 8128.00 1 2408 7 2608 7	MS002191	Stennis Institute	1935	13178.00	2	3060	Wood
Comprehensive Testing Center 1937 7300.00 1 1715 1 Arbour Acres Laundry 1905 25960.00 1 1602 <td>MS002192</td> <td></td> <td>1916</td> <td>7344.00</td> <td>1</td> <td>2065</td> <td>Wood</td>	MS002192		1916	7344.00	1	2065	Wood
Arbour Acres Laundry 1905 25960.00 1 1602 Magruder 58 1919 8128.00 1 2408	MS002193	Comprehensive	1937	7300.00	1	1715	Wood
Magruder 58 1919 8128.00 1 2408	MS002194		1905	25960.00	1	1602	Wood
	MS002195		1919	8128.00	1	2408	Wood

	TYPE OF CONSTRUCTION	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood
	AREA SO. FT	4	2054 V	2164 V	1873 V	2161 V	3558 V	1453 V	3696 V	2530 V	2891 V	2855 V	2283 V	2304 V	2096 V	1419 V	4095 V	1375 V	1213 V	2214 V	800 V	2313 V	2346 V	3006 V
	NO. OF FLOORS	1	1	1	1	1	2	1	2	1	1	2	2	1	1	1	2	1	1	1	1	2	2	1
	CONSTRUCTION COST IN US\$	7344.00	6320.00	7560.00	7625.00	5124.00	18271.00	7200.00	66435.00	23441.00	4989.00	9000.00	7256.00	10490.00	7762.00	4968.00	6000.00	3168.00	3000.00	25000.00	2250.00	7377.00	5282.00	6984.00
	YEAR BUILT	1916	1917	1920	1934	1901	1903	1890	1890	1897	1904	1921	1922	1911	1910	1921	1902	1929	1917	1948	1978	1882	1902	1910
ed)	NAME	Magruder 59	Magruder 60	Magruder 61	Morgan 48	Center For Science & Mathematics	Morgan 6-8	Morgan 10	Philosphy & Religion	Faculty Housing	Morgan 46	Morgan 47	Morgan 49	Morgan 51	Morgan 52	Morgan 53	Morgan 54-56	Blackjack 16	Morgan 55	Morrill 880	Morrill 880 Carport & Storage	Blackjack 42	Blackjack 44	Early Childhood Institute
Table 12 (Continued)	D	MS002196	MS002197	MS002198	MS002199	MS002200	MS002201	MS002202	MS002203	MS002204	MS002205	MS002206	MS002207	MS002208	MS002209	MS002210	MS002211	MS002212	MS002213	MS002214	MS002215	MS002216	MS002217	MS002218
Table											8	33												
الم للاستشارات		i	5																		W	vw	ma	ana

	TYPE OF CONSTRUCTION	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Wood	Metal	Wood	Metal	Wood	Metal	Concrete	Metal	Concrete	Concrete	Wood	Wood	Wood
	AREA SO FT	1838	1482	1482	1482	1482	1482	1482	1482	1482	1482	1482	1580	2417	4500	319	800	180	1200	225	225	333	400	2592
	NO. OF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	CONSTRUCTION	7095.00	15584.00	15584.00	15584.00	15584.00	15584.00	15584.00	15584.00	15584.00	15584.00	15584.00	4080.00	17400.00	22166.00	1200.00	6956.00	2500.00	3500.00	1350.00	1350.00	14600.00	9096.00	22597.37
	YEAR	1929	1960	1960	1960	1960	1960	1960	1960	1960	1960	1960	1984	1950	1971	1948	1975	1975	1970	1936	1939	1970	1985	1984
ed)	NAMF	Blackjack 48	White 1	White 3	White 2	White 4	Maroon 5	Maroon 6	Maroon 7	Maroon 8	Maroon 9	Maroon 10	Electrical Engineering Storage	Maroon 11-12	Golf Course Shop & Storage	Morrill 882	Observatory	Radioactive Storage Bldg	Airport Storage-Large	Water Well 1	Water Well 2	Water Well 3	Hazardous/Radiological Waste/Stor	Aiken Village Pavilion
Table 12 (Continued)	E	MS002219	MS002220	MS002221	MS002222	MS002223	MS002224	MS002225	MS002226	MS002227	MS002228	MS002229	MS002230	MS002231	MS002232	MS002233	MS002234	MS002235	MS002236	MS002237	MS002238	MS002239	MS002240	MS002241
Table											8	84												
للاستشارات		i																			W	vw	.ma	anai

لمارات								
للاستث								
äj	Table 1	Table 12 (Continued)	led)					
		e	NAME	YEAR BUILT	CONSTRUCTION COST IN US\$	NO. OF FLOORS	AREA SQ. FT	TYPE OF CONSTRUCTION
ì	<u> </u>	MS002242	Aircraft Office- Hangers 1 & 2	1980	366602.00	1	10556	Metal
5		MS002243	Aiken Village Shop & Storage	1971	8824.00	1	684	Brick
		MS002244	Campus Landscape Equipment Building	1983	69840.00	1	7760	Metal
		MS002245	White 5	1986	47174.00	1	1496	Wood
		MS002246	Maroon 4	1986	53619.00	1	1496	Wood
		MS002247	Sheely House	1988	78500.20	1	2526	Wood
		MS002248	East Road 893	1990	28987.43	1	1354	Wood
		MS002249	Hazardous Waste Storage Building	1991	38176.00	1	1543	Concrete
		MS002250	Campus Landscape Storage & Office	1991	10900.00	1	864	Metal
85		MS002251	Support Services Storage & Office	1991	8300.00	1	864	Metal
		MS002252	Small Ruminant Research Facility	1994	150942.92	1	1956	Metal
		MS002253	Golf Course Storage Building	1987	50000.00	1	2667	Wood
		MS002254	PGA Model Golf Facility	1994	465000.00	1	6200	Brick
		MS002255	18 East Drive	1993	55000.00	1	1436	Wood
		MS002256	Radio Transmission Tower Building	1994	27719.00	1	390	Concrete
		MS002257	Companion Animal Research Facility	1995	133367.72	1	3000	Metal
		MS002258	CVM Hay Barn	1991	38453.00	1	3750	Metal
		MS002259	Support Services Storage Bldg A	1995	96167.00	1	6000	Metal
v		MS002260	Support Services Storage Bldg B	1995	100485.00	1	7200	Metal
vwv		MS002261	CVM Cattle Working Facility	1991	40141.75	1	1548	Steel
v.n		MS002262	Morrill 898	1997	67950.00	1	2418	Wood
nana		MS002263	ITS Computing Center Bldg-North	1997	22000.00	1	1202	Steel, Wood

ued)
(Contin
12
ble

	TYPE OF	CONSTRUCTION	Steel, Wood	Steel, Wood	Steel, Masonry	Steel, Masonry	Steel, Masonry	Wood	Metal	Metal	Wood	Metal, Wood	Wood	Wood, Brick	Wood, Brick	Metal	Concrete	Metal	Metal	Metal	Wood, Brick	Metal	Metal	Wood, Brick
	AREA	SQ. FT	1192	2005	2838	1936	668	3753	1820	840	62	1960	45	1471	2422	178	192	21120	21120	21120	3312	4000	1736	1765
	NO. OF	FLOORS	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	CONSTRUCTION	COST IN US\$	22000.00	32000.00	119000.00	125450.00	49000.00	85000.00	19000.00	13000.00	3200.00	2500.00	2000.00	51798.00	112274.00	27965.00	20000.00	221964.00	221964.00	221964.00	668796.24	51945.06	356754.37	98840.00
	YEAR	BUILT	1997	1997	1998	1998	1998	1986	1992	1987	1996	1990	1990	1998	1998	1998	1999	1999	1999	1999	2000	1999	2000	2000
ued)		NAME	ITS Computing Center Bldg-East	ITS Computing Center Bldg-West	Intramural Sports Office & Maintenance	Intramural Softball Control Center	Soccer Field Men/Women Restrooms	Crosby Arboretum Pavilion	Crosby Arboretum Gift Shop	Crosby Arboretum Maintenance Shop	Crosby Arboretum Admissions	Crosby Arboretum Greenhouse	Crosby Arboretum Restroom	Blackjack 827	Blackjack 905	Campus Landscape Chemical Storage Bldg	MSU AgriCenter Fire Pump Building	MSU AgriCenter Barn 1	MSU AgriCenter Barn 2	MSU AgriCenter Barn 3	Student Life Center (Morrill 910)	Campus Landscape Equipment Storage Bldg	CVM Modular Research Building	Blackjack 909
Table 12 (Continued)		Ð	MS002264	MS002265	MS002266	MS002267	MS002268	MS002269	MS002270	MS002271	MS002272	MS002273	MS002274	MS002275	MS002276	MS002277	MS002278	MS002279	MS002280	MS002281	MS002282	MS002283	MS002284	MS002285
Tab												8	86											
لم للاستشارات			1	2																	v	vww	ma	anar

	TYPE OF	CONSTRUCTION	Concrete	Metal	Metal	Wood	Wood	Metal	Metal	Metal	Wood	Metal	Wood	Concrete	Wood	Masonry	Metal	Masonry	Masonry
	AREA	SQ. FT	4608	252	4615	1736	2814	1820	1820	21000	1310	4392	2349	720	1053	20000	2450	1060	3000
	NO. OF	FLOORS	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
	CONSTRUCTION	COST IN US\$	513182.71	12600.00	161525.00	104386.98	70527.99	46711.00	39794.00	255006.25	66500.00	115000.00	127000.00	65606.74	500.00	286183.00	89003.00	421533.00	1516028.00
	YEAR	BUILT	2000	1999	1997	1938	1959	2002	2002	2002	2002	2003	2003	2005	1945	2005	2003	2005	2005
led)		NAME	CVM Aquatic Hatchery	Raspet Generator Equipment Building	Aircraft Hangar #3	Morrill 902	East 890	HPCC Modular Annex #1	HPCC Modular Annex #2	MSU AgriCenter Covered Arena	Oktoc 1242	Raspet Flight Hanger #4	Blackjack 906	Moth Building	Old House by MSU Golf Course	Women's Softball Practice Facility	CAVS Dynamometer Lab	Power Generation Electrical Rm Bldg B	Power Generation Gas Compressor Bldg C
Table 12 (Continued)		Ð	MS002286	MS002287	MS002288	MS002289	MS002290	MS002291	MS002292	MS002293	MS002294	MS002295	MS002296	MS002297	MS002298	MS002299	MS002300	MS002301	MS002302
Tapp الم للاستشارات			i	5								8	37						

APPENDIX B

DAMAGE PROBABILITIES FOR THE LIST OF BUILDINGS STUDIED AT THE MISSISSIPPI STATE UNIVERSITY

Table 13Damage state probabilities for the list of buildings studied (These tables are
presented in the output format of HAZUS-MH MR3)

ID Number	Name	None	Slight	Moderate	Extensive	Comple
MS002000	Industrial Education	0.907	0.055	0.033	0.005	0
MS002001	George Hall	0.903	0.054	0.038	0.006	0
MS002002	Montgomery Hall	0.838	0.107	0.052	0.002	C
MS002003	McCain Engineering	0.903	0.053	0.038	0.005	0
MS002004	Middleton Hall	0.903	0.053	0.038	0.005	0
MS002005	Materials Testing Lab	0.907	0.055	0.034	0.005	C
MS002006	Lee Hall	0.838	0.108	0.052	0.002	C
MS002007	Carpenter Engineering	0.838	0.107	0.052	0.002	C
MS002008	YMCA & Post Office	0.869	0.088	0.041	0.001	C
MS002009	Perry Cafeteria	0.910	0.083	0.007	0.000	C
MS002010	Harned Hall	0.838	0.108	0.053	0.002	0
MS002011	Steam Plant	0.876	0.089	0.033	0.002	(
MS002012	Herbert Hall	0.876	0.089	0.033	0.002	(
MS002013	Stennis Institute	0.904	0.053	0.038	0.005	
MS002014	Giles Hall	0.902	0.054	0.039	0.006	
MS002015	Bowen Hall	0.876	0.089	0.033	0.002	
MS002015	Lloyd-Ricks Building	0.878	0.108	0.053	0.002	
MS002010 MS002017	Flower Shop & Student Media Ctr	0.906	0.108	0.033	0.002	
MS002018	Hull Hall	0.902	0.054	0.038	0.006	0
MS002019	Magruder Hall	0.903	0.054	0.038	0.006	0
MS002020	Band Hall	0.905	0.053	0.037	0.005	(
MS002021	Bedenbaugh Animal Laboratory	0.875	0.089	0.033	0.002	(
MS002022	Faculty Housing	0.920	0.069	0.010	0.001	(
MS002023	Box Building (formerly 35 Morrill Rd)	0.920	0.069	0.010	0.001	
MS002024	Student Housing	0.905	0.056	0.034	0.005	(
MS002025	Art Gallery	0.905	0.056	0.034	0.005	(
MS002026	Art Gallery	0.905	0.056	0.034	0.005	(
MS002027	Roberts Building	0.907	0.055	0.034	0.005	(
MS002028	Briscoe Hall	0.902	0.054	0.038	0.006	C
MS002029	Freeman Hall	0.902	0.054	0.038	0.006	C
MS002030	Moore Hall	0.902	0.054	0.038	0.006	0
MS002031	Hill Poultry Science	0.903	0.054	0.038	0.006	
MS002032	Stafford Hall	0.873	0.098	0.027	0.002	
MS002033	Plant Pathology Greenhouse	0.920	0.069	0.010	0.001	
MS002033	Davis-Wade Football Stadium	0.847	0.103	0.046	0.004	
MS002034	Howell Agricultural Engineering	0.901	0.054	0.040	0.004	
MS002036	McCarthy Gym	0.836	0.102	0.059	0.003	(
MS002037	Mitchell Memorial Library	0.722	0.211	0.055	0.011	(
MS002038	Patterson Engineering	0.876	0.089	0.033	0.002	(
MS002039	Newell-Grissom Building	0.906	0.055	0.034	0.005	(
MS002040	Sewage Treatment Plant	0.906	0.055	0.034	0.005	(
MS002041	Butler-Williams Building	0.739	0.130	0.108	0.022	
MS002042	Petroleum Products Lab	0.837	0.101	0.058	0.003	0
MS002043	Etheredge Chemical Engineering	0.876	0.089	0.033	0.002	(
MS002044	Critz Hall	0.875	0.089	0.033	0.002	(
MS002045	Garner Hall	0.902	0.054	0.038	0.006	(
MS002046	Music Building "A"	0.877	0.084	0.036	0.002	(
MS002047	Music Building "B"	0.908	0.054	0.033	0.005	(
MS002048	Butler Hall	0.873	0.098	0.027	0.002	(
MS002049	McKee Hall	0.805	0.148	0.044	0.002	(
MS002050	Memorial Hall	0.875	0.090	0.033	0.002	
MS002050	Sessums Hall	0.804	0.149	0.033	0.002	(
MS002051 MS002052	Turman Field House	0.804	0.149	0.044	0.002	
	Hilbun Hall					(
MS002053		0.804	0.149	0.044	0.002	
MS002054	Walker Engineering	0.876	0.089	0.033	0.002	0
MS002055	Cresswell Hall	0.806	0.147	0.044	0.002	0
MS002056	Raspet Flight Research Lab	0.741	0.129	0.108	0.022	(
MS002057	Ballew	0.876	0.089	0.033	0.002	C
MS002058	Hand Chemical Lab	0.806	0.148	0.044	0.002	(
MS002059	Colvard Student Union	0.875	0.089	0.033	0.002	0

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002060	Aiken Village 20	0.873	0.091	0.034	0.002	0.00
MS002061	Aiken Village 21	0.873	0.091	0.034	0.002	0.00
MS002062	Aiken Village 22	0.873	0.091	0.034	0.002	0.00
MS002063	Aiken Village 23	0.873	0.091	0.034	0.002	0.00
MS002064	Aiken Village 24	0.873	0.091	0.034	0.002	0.00
MS002065	Aiken Village 25	0.873	0.091	0.034	0.002	0.00
MS002066	Aiken Village 26	0.873	0.091	0.034	0.002	0.00
MS002067	Aiken Village 27	0.872	0.091	0.034	0.002	0.00
MS002068	Aiken Village 28	0.872	0.091	0.034	0.002	0.00
MS002069	Aiken Village 30	0.873	0.091	0.034	0.002	0.00
MS002070	Aiken Village 31	0.873	0.091	0.034	0.002	0.00
MS002070 MS002071	Aiken Village 32	0.873	0.091	0.034	0.002	0.00
MS002072	Aiken Village 33	0.872	0.091	0.034	0.002	0.00
MS002073	Aiken Village 34	0.872	0.091	0.034	0.002	0.00
MS002074	Aiken Village 35	0.872	0.091	0.034	0.002	0.00
MS002075	Aiken Village 36	0.872	0.091	0.034	0.002	0.00
MS002076	Aiken Village 37	0.872	0.091	0.034	0.002	0.00
MS002077	Longest Student Health Center	0.837	0.102	0.058	0.003	0.00
MS002078	Chapel of Memories	0.821	0.115	0.053	0.009	0.00
MS002079	Evans Hall	0.917	0.070	0.013	0.000	0.00
MS002080	Dorman Hall	0.804	0.149	0.044	0.002	0.00
MS002081	Polk-Dement Baseball Stadium	0.832	0.104	0.061	0.003	0.00
MS002082	Edwards Reactor Lab	0.880	0.079	0.039	0.002	0.00
MS002083	Hathorn Hall	0.807	0.147	0.044	0.002	0.00
MS002084	Music Building	0.908	0.054	0.033	0.005	0.00
MS002085	President's Home	0.908	0.054	0.033	0.005	0.00
MS002086	Receiving Station	0.905	0.056	0.034	0.005	0.00
MS002087	Rice Hall	0.723	0.210	0.055	0.011	0.00
MS002088	Cooley Building	0.908	0.084	0.008	0.000	0.00
MS002089	Suttle Hall	0.500	0.004	0.056	0.000	0.00
MS002089	McArthur Hall	0.916	0.213	0.038	0.000	0.00
MS002090	GeoScience Storage Bldg	0.916	0.070	0.013	0.000	0.00
MS002092	Physical Plant Buckner Storage	0.745	0.128	0.106	0.021	0.00
MS002093	Scales Veterinary Science	0.839	0.101	0.057	0.003	0.00
MS002094	Clay Lyle Entomology Center	0.835	0.102	0.059	0.003	0.0
MS002095	Clay Lyle Greenhouse Lab	0.919	0.070	0.010	0.001	0.0
MS002096	Herzer Dairy Science	0.903	0.054	0.038	0.005	0.0
MS002097	Gast Rearing Lab	0.835	0.102	0.059	0.003	0.0
MS002098	Allen Hall	0.753	0.149	0.084	0.013	0.0
MS002099	Cobb Institute Of Archaeology	0.876	0.089	0.033	0.002	0.0
MS002100	Humphrey Coliseum	0.892	0.077	0.030	0.001	0.0
MS002101	McCool Hall	0.838	0.107	0.052	0.002	0.0
MS002102	Noble Pace Seed Technology	0.907	0.055	0.033	0.005	0.0
MS002103	Simrall Electrical Engineering	0.839	0.107	0.052	0.002	0.0
MS002104	Bost	0.917	0.070	0.013	0.000	0.0
MS002105	Sewage Lab	0.922	0.068	0.010	0.001	0.0
MS002106	Shira Field House	0.875	0.082	0.041	0.002	0.0
MS002107	CVM Large Animal Clinic	0.881	0.078	0.038	0.002	0.0
MS002108	Solvent Storage	0.745	0.128	0.106	0.021	0.0
MS002100	Wise Center	0.809	0.126	0.043	0.021	0.0
						0.0
MS002110	Arbour Acres 1	0.876	0.096	0.026	0.002	
MS002111	Arbour Acres 2	0.876	0.096	0.026	0.002	0.0
MS002112	Arbour Acres 3	0.876	0.096	0.026	0.002	0.0
MS002113	Arbour Acres 4	0.876	0.096	0.026	0.002	0.0
MS002114	Arbour Acres 5	0.876	0.096	0.026	0.002	0.0
MS002115	Arbour Acres 6	0.876	0.096	0.026	0.002	0.0
MS002116	Arbour Acres 7	0.876	0.096	0.026	0.002	0.0
MS002117	Transportation Shop	0.876	0.096	0.026	0.002	0.0
MS002118	Facilities Use /Support Services	0.876	0.096	0.026	0.002	0.0
	Campus Landscape Office	0.745	0.128	0.106	0.021	0.0

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002120	Campus Landscape Shop	0.745	0.128	0.106	0.021	0.0
MS002121	Academic Advising Center	0.920	0.069	0.010	0.001	0.0
MS002122	McComas Hall	0.871	0.085	0.037	0.006	0.0
MS002123	Physical Plant Shop/Storage Building	0.738	0.131	0.109	0.022	0.0
MS002124	Cobb Institute Curation Facility	0.745	0.128	0.106	0.021	0.0
MS002125	Butler Guest House	0.906	0.055	0.034	0.005	0.0
MS002126	Comparative Biomedical Res Facility	0.876	0.096	0.026	0.002	0.
MS002127	PGM Academic Facility	0.871	0.099	0.028	0.002	0.
MS002128	Seal "M" Club Building	0.873	0.098	0.027	0.002	0.
MS002129	Raspet Flight Research Lab Annex	0.873	0.098	0.027	0.002	0.
MS002130	High Performance Computing Center	0.731	0.133	0.113	0.023	0.
MS002132	Ammerman-Hearnsburger Food Processing	0.740	0.130	0.108	0.022	0.
MS002133	Bryan Athletic Administration Bldg	0.904	0.056	0.035	0.005	0.
MS002134	RCU Building	0.876	0.096	0.026	0.002	0.
MS002135	Center For Writing & Thinking	0.737	0.131	0.109	0.022	0.
MS002136	Plant & Soil Sciences Greenhouses	0.910	0.053	0.032	0.004	0.
MS002137	Child Development & Family Studies Ctr	0.873	0.091	0.034	0.002	0.
MS002138	ICET	0.868	0.101	0.029	0.002	0.
MS002139	Sanderson Recreation Center	0.872	0.099	0.028	0.002	0.
MS002140	Mississippi Horse Park/AgriCenter	0.889	0.087	0.022	0.001	0.
MS002142	Swalm Chemical Engineering Bldg	0.839	0.107	0.052	0.002	0.
MS002143	Landscape Architecture Seminar/Studio	0.741	0.129	0.108	0.022	0.
MS002144	Landscape Architecture Freehand Studio	0.741	0.129	0.108	0.022	0.
MS002145	Landscape Architecture Administration	0.741	0.129	0.108	0.022	0.
MS002148	CAVS - Thad Cochran Research Park	0.912	0.052	0.031	0.004	0
MS002150	Power Generation Plant	0.878	0.080	0.040	0.002	0
MS002153	Ruby Hall	0.902	0.054	0.038	0.006	0.
MS002154	Cullis Wade Depot	0.873	0.098	0.027	0.002	0
MS002155	Palmeiro Center	0.895	0.057	0.041	0.002	0
MS002156	Griffis Hall	0.895	0.0075	0.029	0.001	0.
MS002150	Hurst Hall	0.902	0.073	0.028	0.006	0.
MS002158	Baseball Coaches Offices	0.895	0.057	0.030	0.006	0
MS002159	Building #3 - Northeast Village	0.902	0.054	0.038	0.006	0
MS002160	Band and Choral Rehearsal Hall	0.908	0.054	0.033	0.005	0.
MS002160	Soccer Press Box	0.906	0.055	0.034	0.005	0.
MS002162	Aerospace Engineering Motor Test	0.907	0.055	0.033	0.005	0
MS002162	Ag Engineering Processing Lab	0.735	0.131	0.110	0.023	0
MS002164	Int'l Security & Strategic Studies	0.911	0.081	0.007	0.000	0
MS002164	CVM Poultry House	0.745	0.001	0.007	0.021	0.
MS002165	Campus Landscape Storage	0.912	0.081	0.103	0.000	0
MS002160	Bulldog 11-12	0.912	0.001	0.007	0.000	0
MS002167	Buildog 13-14	0.918	0.071	0.011	0.001	0.
MS002168 MS002169	Buildog 15-14 Buildog 15-16	0.918	0.071	0.011	0.001	0
MS002169 MS002170	<u> </u>					
	Buildog 17-18 Buildog 10-00	0.918	0.071	0.011	0.001	0.
MS002171	Buildog 19-20	0.918	0.071	0.011	0.001	0
MS002172	Buildog 21-22	0.918	0.071	0.011	0.001	0
MS002173	Buildog 23-24	0.918	0.071	0.011	0.001	0
MS002174	Buildog 25-26	0.918	0.071	0.011	0.001	0
MS002175	Buildog 27-28	0.918	0.071	0.011	0.001	0
MS002176	Buildog 29-30	0.918	0.071	0.011	0.001	0
MS002177	Buildog 31-32	0.918	0.071	0.011	0.001	0.
MS002178	Bulldog 33-34	0.918	0.071	0.011	0.001	0
MS002179	Buildog 35-36	0.918	0.071	0.011	0.001	0.
MS002180	Buildog 37-38	0.918	0.071	0.011	0.001	0
MS002181	Buildog 39-40	0.918	0.071	0.011	0.001	0
MS002182	Buildog 41-42	0.918	0.071	0.011	0.001	0
MS002183	Buildog 43-44	0.918	0.071	0.011	0.001	0
MS002184	Bulldog 45-46	0.918	0.071	0.011	0.001	0.
MS002185	Bulldog 47-48	0.918	0.071	0.011	0.001	0.
MS002186	Buildog 49-50	0.918	0.071	0.011	0.001	0

ID Number	Name	None	Slight	Moderate	Extensive	Complet
MS002187	Bulldog 51-52	0.918	0.071	0.011	0.001	0.
MS002188	Morgan 45	0.920	0.069	0.010	0.001	0.
MS002189	Center For America's Veterans	0.920	0.069	0.010	0.001	0.
MS002190	Transportation	0.920	0.069	0.010	0.001	0.
MS002191	Stennis Institute	0.920	0.069	0.010	0.001	0.
MS002192	History	0.920	0.069	0.010	0.001	0.
MS002193	Comprehensive Testing Center	0.920	0.069	0.010	0.001	0.
MS002194	Arbour Acres Laundry	0.920	0.069	0.010	0.001	0.
MS002195	Magruder 58	0.920	0.069	0.010	0.001	0.
MS002196	Magruder 59	0.920	0.069	0.010	0.001	0.
MS002197	Magruder 60	0.920	0.069	0.010	0.001	0
MS002198	Magruder 61	0.920	0.069	0.010	0.001	0
MS002199	Morgan 48	0.920	0.069	0.010	0.001	0
MS002200	Center For Science & Mathematics	0.920	0.069	0.010	0.001	0
MS002201	Morgan 6-8	0.920	0.069	0.010	0.001	0
MS002202	Morgan 10	0.920	0.069	0.010	0.001	0
MS002203	Philosphy & Religion	0.920	0.069	0.010	0.001	0
MS002203	Faculty Housing	0.920	0.069	0.010	0.001	0
MS002204	Morgan 46	0.920	0.069	0.010	0.001	0
MS002205 MS002206	Morgan 47	0.920	0.069	0.010	0.001	0
MS002206 MS002207	Morgan 49	0.920	0.069	0.010	0.001	0
MS002207 MS002208				0.010		0
	Morgan 51	0.920	0.069		0.001	
MS002209	Morgan 52	0.920	0.069	0.010	0.001	0
MS002210	Morgan 53	0.920	0.069	0.010	0.001	0
MS002211	Morgan 54-56	0.920	0.069	0.010	0.001	0
MS002212	Blackjack 16	0.921	0.068	0.010	0.001	0
MS002213	Morgan 55	0.920	0.069	0.010	0.001	0
MS002214	Morrill 880	0.920	0.069	0.010	0.001	0
MS002215	Morrill 880 Carport & Storage	0.920	0.069	0.010	0.001	0
MS002216	Blackjack 42	0.921	0.068	0.010	0.001	0
MS002217	Blackjack 44	0.921	0.068	0.010	0.001	0
MS002218	Early Childhood Institute	0.921	0.068	0.010	0.001	0
MS002219	Blackjack 48	0.921	0.068	0.010	0.001	0
MS002220	White 1	0.921	0.068	0.010	0.001	0
MS002221	White 3	0.916	0.072	0.011	0.001	0
MS002222	White 2	0.918	0.071	0.011	0.001	0
MS002223	White 4	0.918	0.071	0.011	0.001	0
MS002224	Maroon 5	0.918	0.070	0.011	0.001	0
MS002225	Maroon 6	0.918	0.070	0.011	0.001	0
MS002226	Maroon 7	0.918	0.070	0.011	0.001	0
MS002227	Maroon 8	0.918	0.070	0.011	0.001	0
MS002228	Maroon 9	0.918	0.070	0.011	0.001	0
MS002220	Maroon 10	0.918	0.070	0.011	0.001	
MS002230	Electrical Engineering Storage	0.743	0.129	0.107	0.021	0
MS002230 MS002231	Maroon 11-12	0.918	0.129	0.107	0.021	0
	Golf Course Shop & Storage					
MS002232		0.736	0.131	0.110	0.023	0
MS002233	Morrill 882	0.920	0.069	0.010	0.001	0
MS002234	Observatory	0.760	0.123	0.098	0.019	
MS002235	Radioactive Storage Bldg	0.870	0.079	0.047	0.004	0
MS002236	Airport Storage-Large	0.739	0.130	0.108	0.022	0
MS002237	Water Well 1	0.876	0.088	0.033	0.002	0
MS002238	Water Well 2	0.876	0.089	0.033	0.002	0
MS002239	Water Well 3	0.920	0.069	0.010	0.001	0
MS002240	Hazardous/Radiological Waste/Stor	0.921	0.068	0.010	0.001	0
MS002241	Aiken Village Pavilion	0.917	0.071	0.011	0.001	0
MS002242	Aircraft Office- Hangers 1 & 2	0.739	0.130	0.108	0.022	0
MS002243	Aiken Village Shop & Storage	0.873	0.091	0.034	0.002	0
MS002244	Campus Landscape Equipment Building	0.745	0.128	0.106	0.021	0
MS002246	Maroon 4	0.918	0.070	0.011	0.001	0
			0.071			

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002248	East Road 893	0.920	0.069	0.010	0.001	0.000
MS002249	Hazardous Waste Storage Building	0.870	0.079	0.047	0.004	0.000
MS002250	Campus Landscape Storage & Office	0.745	0.128	0.106	0.021	0.001
MS002251	Support Services Storage & Office	0.745	0.128	0.106	0.021	0.001
MS002252	Small Ruminant Research Facility	0.745	0.128	0.105	0.021	0.001
MS002253	Golf Course Storage Building	0.918	0.070	0.011	0.001	0.000
MS002254	PGA Model Golf Facility	0.874	0.090	0.034	0.002	0.000
MS002255	18 East Drive	0.920	0.069	0.010	0.001	0.000
MS002256	Radio Transmission Tower Building	0.879	0.075	0.043	0.003	0.000
MS002257	Companion Animal Research Facility	0.745	0.128	0.105	0.021	0.001
MS002258	CVM Hay Barn	0.745	0.128	0.105	0.021	0.001
MS002259	Support Services Storage Bldg A	0.745	0.128	0.106	0.021	0.001
MS002260	Support Services Storage Bldg B	0.745	0.128	0.106	0.021	0.001
MS002261	CVM Cattle Working Facility	0.745	0.128	0.105	0.021	0.001
MS002262	Morrill 898	0.920	0.069	0.010	0.001	0.000
MS002263	ITS Computing Center Bldg-North	0.741	0.129	0.107	0.022	0.001
MS002264	ITS Computing Center Bldg-East	0.741	0.129	0.107	0.022	0.001
MS002265	ITS Computing Center Bldg-West	0.741	0.129	0.107	0.022	0.00
MS002266	Intramural Sports Office & Maintenance	0.878	0.094	0.026	0.002	0.00
MS002267	Intramural Softball Control Center	0.878	0.094	0.026	0.002	0.000
MS002268	Soccer Field Men/Women Restrooms	0.878	0.094	0.026	0.002	0.00
MS002275	Blackiack 827	0.919	0.070	0.011	0.001	0.000
MS002276	Blackiack 905	0.919	0.070	0.011	0.001	0.00
MS002277	Campus Landscape Chemical Storage Bldg	0.745	0.128	0.106	0.021	0.00
MS002278	MSU AgriCenter Fire Pump Building	0.882	0.073	0.042	0.003	0.000
MS002279	MSU AgriCenter Barn 1	0.768	0.120	0.094	0.018	0.00
MS002280	MSU AgriCenter Barn 2	0.768	0.120	0.094	0.018	0.00
MS002281	MSU AgriCenter Barn 3	0.768	0.120	0.094	0.018	0.00
MS002282	Student Life Center (Morrill 910)	0.920	0.069	0.010	0.001	0.00
MS002283	Campus Landscape Equipment Storage Bldg	0.745	0.128	0.106	0.021	0.00
MS002284	CVM Modular Research Building	0.881	0.078	0.038	0.002	0.00
MS002285	Blackiack 909	0,919	0.070	0.011	0.001	0.00
MS002286	CVM Aquatic Hatchery	0.868	0.080	0.048	0.004	0.00
MS002287	Raspet Generator Equipment Building	0.739	0.130	0.108	0.022	0.00
MS002288	Aircraft Hangar #3	0.739	0.130	0.108	0.022	0.00
MS002289	Morrill 902	0.920	0.069	0.010	0.001	0.00
MS002290	East 890	0.920	0.069	0.010	0.001	0.00
MS002291	HPCC Modular Annex #1	0.729	0.133	0.113	0.024	0.00
MS002292	HPCC Modular Annex #2	0.729	0.133	0.113	0.024	0.00
MS002293	MSU AgriCenter Covered Arena	0.768	0.120	0.094	0.018	0.00
MS002294	Oktoc 1242	0.921	0.068	0.010	0.001	0.00
MS002295	Raspet Flight Hanger #4	0.739	0.130	0.108	0.022	0.00
MS002296	Blackjack 906	0.919	0.070	0.011	0.001	0.00
MS002298	Old House by MSU Golf Course	0.900	0.085	0.014	0.001	0.00
MS002299	Women's Softball Practice Facility	0.912	0.052	0.032	0.004	0.00
MS002299	CAVS Dynamometer Lab	0.912	0.052	0.031	0.004	0.00
MS002300	Power Generation Electrical Rm Bldg B	0.907	0.052	0.034	0.005	0.00
110002001	Power Generation Gas Compressor Bldg C	0.907	0.000	0.034	0.005	0.00

APPENDIX C

DAMAGE PROBABILITIES FOR THE LIST OF BUILDINGS STUDIED AT THE MISSISSIPPI STATE UNIVERSITY FOR AN EARTHQUAKE RESULTING IN APPROXIMATELY 0.2g PEAK GROUND ACCELERATION IN THE STUDY AREA

Table 14Damage state probabilities of buildings for an earthquake producing 0.2g
peak ground acceleration in the study area. (These tables are presented in
the output format of HAZUS-MH MR3)

ID Number	Name	None	Slight	Moderate	Extensive	Complet
MS002000	Industrial Education	0.578	0.156	0.194	0.069	0.
MS002001	George Hall	0.501	0.169	0.231	0.094	0.
MS002002	Montgomery Hall	0.562	0.209	0.205	0.020	0
MS002003	McCain Engineering	0.503	0.169	0.230	0.094	0
MS002004	Middleton Hall	0.502	0.169	0.231	0.094	0
MS002005	Materials Testing Lab	0.577	0.156	0.194	0.070	0
MS002006	Lee Hall	0.561	0.209	0.205	0.020	0
MS002000 MS002007	Carpenter Engineering	0.562	0.209	0.205	0.020	0
MS002007	YMCA & Post Office	0.592	0.205	0.205	0.020	0
MS002009	Perry Cafeteria	0.530	0.330	0.132	0.007	0
MS002010	Harned Hall	0.560	0.209	0.206	0.020	0
MS002011	Steam Plant	0.481	0.239	0.221	0.055	0
MS002012	Herbert Hall	0.482	0.239	0.221	0.054	0
MS002013	Stennis Institute	0.506	0.169	0.229	0.093	0
MS002014	Giles Hall	0.497	0.169	0.233	0.096	C
MS002015	Bowen Hall	0.482	0.239	0.221	0.054	0
MS002016	Lloyd-Ricks Building	0.561	0.209	0.205	0.020	0
MS002017	Flower Shop & Student Media Ctr	0.575	0.157	0.195	0.070	0
MS002018	Hull Hall	0.500	0.169	0.232	0.095	C
MS002019	Magruder Hall	0.501	0.169	0.231	0.095	0
MS002019 MS002020	Band Hall	0.501	0.168	0.231	0.090	0
MS002021	Bedenbaugh Animal Laboratory	0.482	0.239	0.221	0.054	0
MS002022	Faculty Housing	0.686	0.235	0.072	0.007	0
MS002023	Box Building (formerly 35 Morrill Rd)	0.687	0.234	0.071	0.007	C
MS002024	Student Housing	0.570	0.157	0.198	0.072	0
MS002025	Art Gallery	0.570	0.157	0.198	0.072	0
MS002026	Art Gallery	0.570	0.157	0.198	0.072	0
MS002027	Roberts Building	0.575	0.157	0.195	0.070	0
MS002028	Briscoe Hall	0.498	0.169	0.233	0.096	C
MS002029	Freeman Hall	0.498	0.169	0.232	0.095	0
MS002030	Moore Hall	0.498	0,169	0.233	0.096	C
MS002031	Hill Poultry Science	0.503	0.169	0.230	0.094	0
MS002032	Stafford Hall	0.458	0.252	0.224	0.059	0
MS002032	Plant Pathology Greenhouse	0.686	0.232	0.224	0.007	
MS002034	Davis-Wade Football Stadium	0.540	0.217	0.203	0.034	0
MS002035	Howell Agricultural Engineering	0.496	0.170	0.234	0.096	0
MS002036	McCarthy Gym	0.496	0.198	0.254	0.044	0
MS002037	Mitchell Memorial Library	0.314	0.366	0.240	0.066	C
MS002038	Patterson Engineering	0.481	0.239	0.221	0.055	C
MS002039	Newell-Grissom Building	0.576	0.157	0.195	0.070	0
MS002040	Sewage Treatment Plant	0.573	0.157	0.197	0.071	C
MS002041	Butler-Williams Building	0.318	0.185	0.316	0.164	0
MS002042	Petroleum Products Lab	0.497	0.197	0.253	0.043	
MS002042 MS002043	Etheredge Chemical Engineering	0.482	0.239	0.233	0.043	
MS002043 MS002044	Critz Hall	0.482	0.239	0.221	0.054	
	Garner Hall					
MS002045		0.497	0.169	0.233	0.096	0
MS002046	Music Building "A"	0.569	0.210	0.179	0.032	0
MS002047	Music Building "B"	0.580	0.156	0.193	0.069	(
MS002048	Butler Hall	0.458	0.252	0.224	0.060	
MS002049	McKee Hall	0.542	0.275	0.162	0.015	0
MS002050	Memorial Hall	0.482	0.239	0.220	0.054	(
MS002051	Sessums Hall	0.542	0.275	0.163	0.016	(
MS002052	Turman Field House	0.481	0.239	0.221	0.055	(
MS002053	Hilbun Hall	0.542	0.275	0.162	0.016	0
MS002054	Walker Engineering	0.481	0.239	0.221	0.055	
	Cresswell Hall					
MS002055		0.548	0.273	0.159	0.015	0
MS002056	Raspet Flight Research Lab	0.332	0.187	0.310	0.155	0
MS002057	Ballew	0.482	0.239	0.220	0.054	C
MS002058	Hand Chemical Lab	0.547	0.274	0.160	0.015	0
MS002059	Colvard Student Union	0.481	0.239	0.221	0.055	(

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002060	Aiken Village 20	0.478	0.239	0.223	0.055	0.0
MS002061	Aiken Village 21	0.478	0.239	0.223	0.056	0.0
MS002062	Aiken Village 22	0.478	0.239	0.223	0.056	0.0
MS002063	Aiken Village 23	0.478	0.239	0.223	0.056	0.0
MS002064	Aiken Village 24	0.477	0.239	0.223	0.056	0.0
MS002065	Aiken Village 25	0.477	0.239	0.223	0.056	0.0
MS002066	Aiken Village 26	0.477	0.239	0.223	0.056	0.0
MS002067	Aiken Village 27	0.477	0.239	0.223	0.056	0.0
MS002068	Aiken Village 28	0.476	0.239	0.224	0.056	0.
MS002069	Aiken Village 30	0.477	0.239	0.223	0.056	0.0
MS002070	Aiken Village 31	0.477	0.239	0.223	0.056	0.0
MS002071	Aiken Village 32	0.477	0.239	0.223	0.056	0.0
MS002071 MS002072	Aiken Village 33	0.477	0.239	0.223	0.056	0.
MS002072 MS002073			0.239	0.224		
	Aiken Village 34 Aiken Village 35	0.476			0.056	0.0
MS002074		0.476	0.239	0.224	0.056	0.0
MS002075	Aiken Village 36	0.476	0.239	0.224	0.056	0.
MS002076	Aiken Village 37	0.476	0.239	0.224	0.056	0.
MS002077	Longest Student Health Center	0.497	0.197	0.253	0.043	0.
MS002078	Chapel of Memories	0.502	0.241	0.186	0.059	0.
MS002079	Evans Hall	0.538	0.277	0.165	0.016	0.
MS002080	Dorman Hall	0.545	0.275	0.161	0.015	0.
MS002081	Polk-Dement Baseball Stadium	0.488	0.198	0.259	0.046	0.
MS002082	Edwards Reactor Lab	0.523	0.184	0.240	0.046	0.
MS002083	Hathorn Hall	0.549	0.273	0.158	0.015	0.
MS002084	Music Building	0.580	0.156	0.193	0.069	0.
MS002085	President's Home	0.583	0.156	0.192	0.068	0.
MS002086	Receiving Station	0.573	0.157	0.196	0.071	0.
MS002087	Rice Hall	0.314	0.366	0.240	0.066	0.
MS002088	Cooley Building	0.528	0.331	0.133	0.007	0.
MS002088	Suttle Hall	0.320	0.366	0.133	0.067	0.
MS002089 MS002090	McArthur Hall	0.539	0.300	0.243	0.007	0.
MS002091	GeoScience Storage Bldg	0.325	0.186	0.313	0.159	0.
MS002092	Physical Plant Buckner Storage	0.325	0.186	0.313	0.159	0.
MS002093	Scales Veterinary Science	0.504	0.197	0.249	0.042	0.
MS002094	Clay Lyle Entomology Center	0.496	0.198	0.254	0.044	0.
MS002095	Clay Lyle Greenhouse Lab	0.685	0.235	0.072	0.007	0.
MS002096	Herzer Dairy Science	0.503	0.169	0.230	0.093	0.
MS002097	Gast Rearing Lab	0.496	0.198	0.254	0.044	0.
MS002098	Allen Hall	0.512	0.235	0.202	0.042	0.
MS002099	Cobb Institute Of Archaeology	0.481	0.239	0.221	0.055	0.
MS002100	Humphrey Coliseum	0.555	0.210	0.209	0.021	0.
MS002101	McCool Hall	0.562	0.209	0.205	0.020	0.
MS002102	Noble Pace Seed Technology	0.583	0.156	0.192	0.068	0.
MS002103	Simrall Electrical Engineering	0.563	0.209	0.204	0.020	0.
MS002104	Bost	0.540	0.276	0.163	0.016	0.
MS002104	Sewage Lab	0.702	0.225	0.066	0.007	0.
MS002105	Shira Field House	0.513	0.225	0.000	0.007	0.
MS002106 MS002107	CVM Large Animal Clinic	0.513	0.185	0.246	0.049	0.
	•					
MS002108	Solvent Storage	0.325	0.186	0.313	0.159	0.
MS002109	Wise Center	0.552	0.272	0.157	0.015	0.
MS002110	Arbour Acres 1	0.465	0.251	0.220	0.057	0.
MS002111	Arbour Acres 2	0.465	0.251	0.220	0.057	0.
MS002112	Arbour Acres 3	0.465	0.251	0.220	0.057	0.
MS002113	Arbour Acres 4	0.465	0.251	0.220	0.057	0.
MS002114	Arbour Acres 5	0.465	0.251	0.220	0.057	0.
MS002115	Arbour Acres 6	0.465	0.251	0.220	0.057	0.
MS002116	Arbour Acres 7	0.465	0.251	0.220	0.057	0.
MS002117	Transportation Shop	0.466	0.251	0.219	0.057	0.
MS002118	Facilities Use /Support Services	0.465	0.251	0.220	0.057	0.
		0.400	0.201	0.220	0.159	0.

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002120	Campus Landscape Shop	0.325	0.186	0.313	0.159	0.0
MS002121	Academic Advising Center	0.689	0.233	0.071	0.007	0.0
MS002122	McComas Hall	0.568	0.212	0.174	0.040	0.0
MS002123	Physical Plant Shop/Storage Building	0.318	0.185	0.316	0.164	0.
MS002124	Cobb Institute Curation Facility	0.325	0.186	0.313	0.159	0.
MS002125	Butler Guest House	0.574	0.157	0.196	0.071	0.
MS002126	Comparative Biomedical Res Facility	0.468	0.251	0.218	0.056	0.
MS002127	PGM Academic Facility	0.438	0.253	0.235	0.066	0.
MS002128	Seal "M" Club Building	0.459	0.252	0.223	0.059	0.
MS002129	Raspet Flight Research Lab Annex	0.470	0.251	0.217	0.056	0
MS002130	High Performance Computing Center	0.303	0.183	0.322	0.172	0
MS002132	Ammerman-Hearnsburger Food Processing	0.320	0.186	0.315	0.162	0
MS002133	Bryan Athletic Administration Bldg	0.563	0.158	0.202	0.075	0
MS002134	RCU Building	0.464	0.251	0.220	0.057	0
MS002135	Center For Writing & Thinking	0.317	0.185	0.316	0.164	0
MS002136	Plant & Soil Sciences Greenhouses	0.596	0.154	0.185	0.064	0
MS002137	Child Development & Family Studies Ctr	0.477	0.239	0.223	0.056	0
MS002138	ICET	0.445	0.253	0.231	0.064	0
MS002139	Sanderson Recreation Center	0.455	0.252	0.226	0.060	0
MS002133	Mississippi Horse Park/AgriCenter	0.498	0.248	0.201	0.048	0
MS002140 MS002142	Swalm Chemical Engineering Bldg	0.563	0.240	0.201	0.048	0
MS002142 MS002143	Landscape Architecture Seminar/Studio	0.303	0.209	0.204	0.020	0
MS002143 MS002144	Landscape Architecture Steminan/Studio	0.321	0.186	0.315	0.162	0
MS002144 MS002145	Landscape Architecture Administration	0.321	0.186	0.315	0.162	0
	CAVS - Thad Cochran Research Park					
MS002148		0.550	0.160	0.208	0.079	0
MS002150	Power Generation Plant	0.523	0.184	0.240	0.046	0
MS002153	Ruby Hall	0.497	0.169	0.233	0.096	0
MS002154	Cullis Wade Depot	0.459	0.252	0.223	0.059	0
MS002155	Palmeiro Center	0.493	0.170	0.235	0.097	0
MS002156	Griffis Hall	0.557	0.210	0.208	0.021	0
MS002157	Hurst Hall	0.497	0.169	0.233	0.096	0
MS002158	Baseball Coaches Offices	0.494	0.170	0.235	0.097	0
MS002159	Building #3 - Northeast Village	0.497	0.169	0.233	0.096	0
MS002160	Band and Choral Rehearsal Hall	0.581	0.156	0.193	0.068	0
MS002161	Soccer Press Box	0.573	0.157	0.196	0.071	0
MS002162	Aerospace Engineering Motor Test	0.580	0.156	0.193	0.069	0
MS002163	Ag Engineering Processing Lab	0.313	0.185	0.318	0.166	0
MS002164	Int'l Security & Strategic Studies	0.535	0.328	0.129	0.007	0
MS002165	CVM Poultry House	0.327	0.186	0.312	0.158	0
MS002166	Campus Landscape Storage	0.537	0.327	0.128	0.006	0
MS002167	Bulldog 11-12	0.727	0.209	0.058	0.005	0
MS002168	Bulldog 13-14	0.727	0.209	0.058	0.005	0
MS002169	Bulldog 15-16	0.727	0.209	0.058	0.005	0
MS002170	Bulldog 17-18	0.727	0.209	0.058	0.005	0
MS002171	Bulldog 19-20	0.727	0.209	0.058	0.005	0
MS002172	Bulldog 21-22	0.727	0.209	0.058	0.005	0
MS002173	Bulldog 23-24	0.727	0.209	0.058	0.005	0
MS002174	Bulldog 25-26	0.727	0.209	0.058	0.005	0
MS002175	Bulldog 27-28	0.727	0.209	0.058	0.005	0
MS002176	Bulldog 29-30	0.727	0.209	0.058	0.005	0
MS002177	Bulldog 31-32	0.727	0.209	0.058	0.005	0
MS002178	Bulldog 33-34	0.727	0.209	0.058	0.006	0
MS002179	Buildog 35-36	0.727	0.209	0.058	0.006	0
MS002180	Buildog 37-38	0.725	0.200	0.059	0.006	0
MS002180	Buildog 39-40	0.725	0.210	0.059	0.006	0
MS002181 MS002182	Buildog 41-42	0.725	0.210	0.059	0.006	0
MS002182 MS002183	Buildog 41-42 Buildog 43-44	0.725	0.210	0.059	0.006	0
	Buildog 45-44 Buildog 45-46					
MS002184		0.725	0.211 0.210	0.059	0.006	0
MS002185	Bulldog 47-48	0.725				

ID Number	Name	None	Slight	Moderate	Extensive	Complet
MS002187	Bulldog 51-52	0.725	0.210	0.059	0.006	0.0
MS002188	Morgan 45	0.691	0.231	0.070	0.007	0.
MS002189	Center For America's Veterans	0.689	0.233	0.071	0.007	0.
MS002190	Transportation	0.689	0.233	0.071	0.007	0.
MS002191	Stennis Institute	0.689	0.233	0.070	0.007	0.
MS002192	History	0.689	0.233	0.071	0.007	0.
MS002193	Comprehensive Testing Center	0.690	0.232	0.070	0.007	0.
MS002194	Arbour Acres Laundry	0.689	0.233	0.071	0.007	0.
MS002195	Magruder 58	0.689	0.233	0.071	0.007	0.
MS002196	Magruder 59	0.689	0.233	0.071	0.007	0.
MS002197	Magruder 60	0.689	0.233	0.071	0.007	0.
MS002198	Magruder 61	0.689	0.233	0.071	0.007	0.
MS002199	Morgan 48	0.691	0.231	0.071	0.007	0.
MS002199	Center For Science & Mathematics	0.685	0.231	0.070	0.007	0.
MS002201	Morgan 6-8	0.691	0.231	0.070	0.007	0.
MS002202	Morgan 10	0.690	0.232	0.070	0.007	0.
MS002203	Philosphy & Religion	0.690	0.232	0.070	0.007	0.
MS002204	Faculty Housing	0.689	0.233	0.070	0.007	0.
MS002205	Morgan 46	0.691	0.231	0.070	0.007	0.
MS002206	Morgan 47	0.691	0.231	0.070	0.007	0.
MS002207	Morgan 49	0.691	0.231	0.070	0.007	0.
MS002208	Morgan 51	0.691	0.231	0.070	0.007	0.
MS002209	Morgan 52	0.689	0.233	0.071	0.007	0.
MS002210	Morgan 53	0.689	0.233	0.071	0.007	0.
MS002211	Morgan 54-56	0.689	0.233	0.071	0.007	0.
MS002212	Blackjack 16	0.692	0.231	0.070	0.007	0.
MS002213	Morgan 55	0.689	0.233	0.071	0.007	0.
MS002214	Morrill 880	0.687	0.234	0.071	0.007	0.
MS002214 MS002215	Morrill 880 Carport & Storage	0.687	0.234	0.071	0.007	0.
MS002215 MS002216	Blackjack 42	0.692	0.234	0.071	0.007	0.
				0.070		0.
MS002217	Blackjack 44	0.692	0.231		0.007	
MS002218	Early Childhood Institute	0.692	0.231	0.070	0.007	0.
MS002219	Blackjack 48	0.692	0.231	0.070	0.007	0.
MS002220	White 1	0.785	0.170	0.041	0.003	0.
MS002221	White 3	0.724	0.211	0.059	0.006	0.
MS002222	White 2	0.726	0.210	0.059	0.006	0.
MS002223	White 4	0.726	0.210	0.059	0.006	0.
MS002224	Maroon 5	0.730	0.207	0.057	0.005	0.
MS002225	Maroon 6	0.730	0.207	0.057	0.005	0.
MS002226	Maroon 7	0.730	0.207	0.057	0.005	0.
MS002227	Maroon 8	0.730	0.207	0.057	0.005	0
MS002228	Maroon 9	0.730	0.207	0.057	0.005	0
MS002229	Maroon 10	0.730	0.207	0.057	0.005	0.
MS002230	Electrical Engineering Storage	0.321	0.186	0.315	0.161	0.
MS002231	Maroon 11-12	0.730	0.207	0.057	0.005	0.
MS002232	Golf Course Shop & Storage	0.296	0.182	0.324	0.177	0
MS002232 MS002233	Morrill 882	0.296	0.182	0.324	0.007	0.
MS002233 MS002234		0.887	0.234			0
	Observatory			0.305	0.147	
MS002235	Radioactive Storage Bldg	0.483	0.176	0.256	0.078	0.
MS002236	Airport Storage-Large	0.329	0.187	0.311	0.157	0.
MS002237	Water Well 1	0.483	0.238	0.220	0.054	0.
MS002238	Water Well 2	0.482	0.239	0.221	0.054	0.
MS002239	Water Well 3	0.751	0.193	0.051	0.005	0.
MS002240	Hazardous/Radiological Waste/Stor	0.696	0.228	0.068	0.007	0.
MS002241	Aiken Village Pavilion	0.732	0.206	0.057	0.005	0.
MS002242	Aircraft Office- Hangers 1 & 2	0.329	0.187	0.311	0.157	0.
MS002243	Aiken Village Shop & Storage	0.477	0.239	0.223	0.056	0.
MS002244	Campus Landscape Equipment Building	0.325	0.186	0.313	0.159	0.
MS002246	Maroon 4	0.729	0.208	0.018	0.005	0.
		0.720	0.200	0.000	0.000	0.

ID Number	Name	None	Slight	Moderate	Extensive	Complete
MS002248	East Road 893	0.746	0.197	0.052	0.005	0.0
/S002249	Hazardous Waste Storage Building	0.483	0.176	0.256	0.078	0.0
MS002250	Campus Landscape Storage & Office	0.325	0.186	0.313	0.159	0.0
MS002251	Support Services Storage & Office	0.325	0.186	0.313	0.159	0.0
MS002252	Small Ruminant Research Facility	0.327	0.186	0.312	0.158	0.0
MS002253	Golf Course Storage Building	0.711	0.219	0.063	0.006	0.0
MS002254	PGA Model Golf Facility	0.461	0.241	0.232	0.060	0.0
MS002255	18 East Drive	0.745	0.197	0.052	0.005	0.0
MS002256	Radio Transmission Tower Building	0.493	0.176	0.251	0.074	0.0
MS002257	Companion Animal Research Facility	0.327	0.186	0.312	0.158	0.0
MS002258	CVM Hay Barn	0.327	0.186	0.312	0.158	0.0
MS002259	Support Services Storage Bldg A	0.325	0.186	0.313	0.159	0.0
MS002260	Support Services Storage Bldg B	0.325	0.186	0.313	0.159	0.0
MS002261	CVM Cattle Working Facility	0.327	0.186	0.312	0.158	0.0
MS002262	Morrill 898	0.687	0.234	0.071	0.007	0.
MS002263	ITS Computing Center Bldg-North	0.320	0.186	0.315	0.162	0.
MS002264	ITS Computing Center Bldg-East	0.320	0.186	0.315	0.162	0.0
MS002265	ITS Computing Center Bldg-West	0.320	0.186	0.315	0.162	0.
MS002266	Intramural Sports Office & Maintenance	0.472	0.251	0.216	0.055	0.
MS002267	Intramural Softball Control Center	0.472	0.251	0.216	0.055	0.
MS002268	Soccer Field Men/Women Restrooms	0.472	0.251	0.216	0.055	0.
MS002275	Blackjack 827	0.685	0.235	0.072	0.007	0.
MS002276	Blackjack 905	0.686	0.235	0.072	0.007	0.
MS002277	Campus Landscape Chemical Storage Bldg	0.325	0.186	0.313	0.159	0.
MS002278	MSU AgriCenter Fire Pump Building	0.510	0.175	0.241	0.068	0.
MS002279	MSU AgriCenter Barn 1	0.359	0,189	0.299	0.141	0.
MS002280	MSU AgriCenter Barn 2	0.359	0.189	0.299	0.141	0.
MS002281	MSU AgriCenter Barn 3	0.359	0,189	0.299	0.141	0.0
MS002282	Student Life Center (Morrill 910)	0.687	0.234	0.071	0.007	0.
MS002283	Campus Landscape Equipment Storage Bldg	0.325	0,186	0.313	0.159	0.
MS002284	CVM Modular Research Building	0.529	0.183	0.236	0.045	0.
AS002285	Blackjack 909	0.686	0.235	0.072	0.007	0.
MS002286	CVM Aquatic Hatchery	0.479	0.176	0.258	0.079	0.
MS002287	Raspet Generator Equipment Building	0.329	0.187	0.311	0.157	0.
MS002288	Aircraft Hangar #3	0.329	0.187	0.311	0.157	0.
MS002289	Morrill 902	0.687	0.234	0.071	0.007	0.
/S002290	East 890	0.745	0.197	0.052	0.005	0.
MS002291	HPCC Modular Annex #1	0.300	0.183	0.323	0.174	0.
MS002292	HPCC Modular Annex #2	0.301	0.183	0.323	0.174	0.
MS002293	MSU AgriCenter Covered Arena	0.359	0.189	0.299	0.141	0.
MS002294	Oktoc 1242	0.695	0.229	0.069	0.007	0.0
VIS002295	Raspet Flight Hanger #4	0.329	0.187	0.311	0.157	0.0
MS002296	Blackjack 906	0.686	0.235	0.072	0.007	0.0
VIS002290	Old House by MSU Golf Course	0.736	0.203	0.072	0.007	0.0
MS002298 MS002299	Women's Softball Practice Facility	0.550	0.203	0.000	0.005	0.0
MS002299 MS002300	CAVS Dynamometer Lab	0.550	0.160	0.208	0.079	0.0
MS002300 MS002301	Power Generation Electrical Rm Bldg B	0.550	0.156	0.208	0.079	0.0
MS002301 MS002302	Power Generation Gas Compressor Bldg C	0.582	0.156	0.192	0.068	0.0
W6002302	Power Generation Gas Compressor Blog C	0.582	0.156	0.192	0.068	0

